网站建设资讯

NEWS

网站建设资讯

Storm的Grouping有哪些

这篇文章主要介绍“Storm的Grouping有哪些”,在日常操作中,相信很多人在Storm的Grouping有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Storm的Grouping有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:国际域名空间、网站空间、营销软件、网站建设、丽江网站维护、网站推广。

##Storm Grouping

  1. shuffleGrouping

    将流分组定义为混排。这种混排分组意味着来自Spout的输入将混排,或随机分发给此Bolt中的任务。shuffle grouping对各个task的tuple分配的比较均匀。

  2. fieldsGrouping

    这种grouping机制保证相同field值的tuple会去同一个task,这对于WordCount来说非常关键,如果同一个单词不去同一个task,那么统计出来的单词次数就不对了。

  3. All grouping

    广播发送, 对于每一个tuple将会复制到每一个bolt中处理。

  4. Global grouping

    Stream中的所有的tuple都会发送给同一个bolt任务处理,所有的tuple将会发送给拥有最小task_id的bolt任务处理。

  5. None grouping

    不关注并行处理负载均衡策略时使用该方式,目前等同于shuffle grouping,另外storm将会把bolt任务和他的上游提供数据的任务安排在同一个线程下。

  6. Direct grouping

    由tuple的发射单元直接决定tuple将发射给那个bolt,一般情况下是由接收tuple的bolt决定接收哪个bolt发射的Tuple。这是一种比较特别的分组方法,用这种分组意味着消息的发送者指定由消息接收者的哪个task处理这个消息。 只有被声明为Direct Stream的消息流可以声明这种分组方法。而且这种消息tuple必须使用emitDirect方法来发射。消息处理者可以通过TopologyContext来获取处理它的消息的taskid (OutputCollector.emit方法也会返回taskid)

##fieldsGrouping

如果你了解Storm,我想你能明白其中的大多数Grouping。这里的Grouping策略我想着重介绍一下fieldsGrouping,也最难理解的。

fieldsGrouping是按照数据中字段Field的值分组的。下面是我的测试代码:

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("words", new TestWordSpout(), 2); 
builder.setBolt("exclaim2", new DefaultStringBolt(), 5)
	    .fieldsGrouping("words", new Fields("word"));

测试的例子Spout是Storm自带的例子,Blot代码如下:

public void execute(Tuple tuple) {
	log.info("rev a message: " + tuple.getString(0));
	collector.emit(tuple, new Values(tuple.getString(0) + "!!!"));
    collector.ack(tuple);
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("word"));
}

Storm自带的例子Spout能随机的返回new String[] {"nathan", "mike", "jackson", "golda", "bertels"};列表中的几个字符串。这也是测试FieldGroup的好例子。

按照我最早做Storm开始前的理解,既然是按照Field分组,那么是所有相同的Field值得数据都会到达一个Blot的。我测试很多次,其结果并不是这样,一个Blot会收到多个不同的值。我没有仔细探究Storm这样分组有什么特别的地方,以至于自己对Storm的学习停滞了很长时间。

Storm能保证所有相同Field值的数据到达的是相同的Blot,但是不保证一个Blot只处理一个值域。

也就是说,所有值是nathan能到达到一个Blot,但是到达同一个Blot的值可能有多个,如"nathan", "mike"的数据都到达。

理解到这点上,fieldsGrouping就算是理解了。

下面是测试日志:

9144 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: bertels
9234 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: mike
9245 [Thread-33-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: nathan
9335 [Thread-26-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: golda
9346 [Thread-26-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: golda
9437 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: jackson
9447 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: mike
9537 [Thread-26-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: golda
9548 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: jackson
9639 [Thread-33-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: nathan
9649 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: jackson
9740 [Thread-33-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: nathan
9749 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: jackson
9841 [Thread-35-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: bertels
9850 [Thread-26-exclaim2] INFO  cn.pointways.dstorm.bolt.DefaultStringBolt - rev a message: golda

由上面的日志可以看出,golda这个值的数据,的确归并到一个Blot处理的。线程编号:Thread-26-exclaim2。 其它值也都是相同值都是在一个线程内被处理的。

到此,关于“Storm的Grouping有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


当前文章:Storm的Grouping有哪些
本文路径:http://njwzjz.com/article/ppchgh.html