网站建设资讯

NEWS

网站建设资讯

flink中的聚合算子是什么

这篇文章主要讲解了“flink中的聚合算子是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“flink中的聚合算子是什么”吧!

创新互联建站从2013年创立,先为察隅等服务建站,察隅等地企业,进行企业商务咨询服务。为察隅企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

前言

flink中的一个接口org.apache.flink.api.common.functions.AggregateFunction,这个类可以接在window流之后,做窗口内的统计计算。

注意:除了这个接口AggregateFunction,flink中还有一个抽象类AggregateFunction:org.apache.flink.table.functions.AggregateFunction,大家不要把这个弄混淆了,接口AggregateFunction我们可以理解为flink中的一个算子,和MapFunction、FlatMapFunction等是同级别的,而抽象类AggregateFunction是用于用户自定义聚合函数的,和max、min之类的函数是同级的。

 

原理解析

比如我们想实现一个类似sql的功能:

select TUMBLE_START(proctime,INTERVAL '2' SECOND)  as starttime,user,count(*) from logs group by user,TUMBLE(proctime,INTERVAL '2' SECOND)
 

这个sql就是来统计一下每两秒钟的滑动窗口内每个人出现的次数,今天我们就以这个简单的sql的功能为例讲解一下flink的aggregate算子,其实就是我们用程序来实现这个sql的功能。

首先看一下聚合函数的接口:


@PublicEvolving
public interface AggregateFunction extends Function, Serializable {
 ACC createAccumulator();
 ACC add(IN value, ACC accumulator);
 ACC merge(ACC a, ACC b);
 OUT getResult(ACC accumulator);
}

 

这个接口AggregateFunction里面有4个方法,我们分别来讲解一下。

  1. AggregateFunction这个类是一个泛型类,这里面有三个参数,IN, ACC, OUT。IN就是聚合函数的输入类型,ACC是存储中间结果的类型,OUT是聚合函数的输出类型。
  2. createAccumulator    
    这个方法首先要创建一个累加器,要进行一些初始化的工作,比如我们要进行count计数操作,就要给累加器一个初始值。
  3. add    
    add方法就是我们要做聚合的时候的核心逻辑,比如我们做count累加,其实就是来一个数,然后就加一。    
    类似上面的sql的逻辑,我们在写业务逻辑的时候,可以这么想,进入这方法数的数据都是属于某一个用户的,系统在调用这个方法之前会先进行hash分组,然后不同的用户会重复调用这个方法。所以这个函数的入参是IN类型,返回值是ACC类型
  4. merge    
    因为flink是一个分布式计算框架,可能计算是分布在很多节点上同时进行的,比如上述的add操作,可能同一个用户在不同的节点上分别调用了add方法在本地节点对本地的数据进行了聚合操作,但是我们要的是整个结果,整个时候,我们就需要把每个用户各个节点上的聚合结果merge一下,整个merge方法就是做这个工作的,所以它的入参和出参的类型都是中间结果类型ACC。
  5. getResult    
    这个方法就是将每个用户最后聚合的结果经过处理之后,按照OUT的类型返回,返回的结果也就是聚合函数的输出结果了。
 

实例讲解 

自定义source

首先我们自定义source生成用户的信息

 public static class MySource implements SourceFunction>{

  private volatile boolean isRunning = true;

  String userids[] = {
    "4760858d-2bec-483c-a535-291de04b2247", "67088699-d4f4-43f2-913c-481bff8a2dc5",
    "72f7b6a8-e1a9-49b4-9a0b-770c41e01bfb", "dfa27cb6-bd94-4bc0-a90b-f7beeb9faa8b",
    "aabbaa50-72f4-495c-b3a1-70383ee9d6a4", "3218bbb9-5874-4d37-a82d-3e35e52d1702",
    "3ebfb9602ac07779||3ebfe9612a007979", "aec20d52-c2eb-4436-b121-c29ad4097f6c",
    "e7e896cd939685d7||e7e8e6c1930689d7", "a4b1e1db-55ef-4d9d-b9d2-18393c5f59ee"
  };

  @Override
  public void run(SourceContext> ctx) throws Exception{
   while (isRunning){
    Thread.sleep(10);
    String userid = userids[(int) (Math.random() * (userids.length - 1))];
    ctx.collect(Tuple2.of(userid, System.currentTimeMillis()));
   }
  }

  @Override
  public void cancel(){
   isRunning = false;
  }
 }
   

自定义聚合函数


 public static class CountAggregate
   implements AggregateFunction,Integer,Integer>{

  @Override
  public Integer createAccumulator(){
   return 0;
  }

  @Override
  public Integer add(Tuple2 value, Integer accumulator){
   return ++accumulator;
  }

  @Override
  public Integer getResult(Integer accumulator){
   return accumulator;
  }

  @Override
  public Integer merge(Integer a, Integer b){
   return a + b;
  }
 }
   

自定义结果输出函数


 /**
  * 这个是为了将聚合结果输出
  */
 public static class WindowResult
   implements WindowFunction,Tuple,TimeWindow>{

  @Override
  public void apply(
    Tuple key,
    TimeWindow window,
    Iterable input,
    Collector> out) throws Exception{

   String k = ((Tuple1) key).f0;
   long windowStart = window.getStart();
   int result = input.iterator().next();
   out.collect(Tuple3.of(k, new Date(windowStart), result));

  }
 }
   

主流程


 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
  DataStream> dataStream = env.addSource(new MySource());

  dataStream.keyBy(0).window(TumblingProcessingTimeWindows.of(Time.seconds(2)))
            .aggregate(new CountAggregate(), new WindowResult()
            ).print();

  env.execute();

感谢各位的阅读,以上就是“flink中的聚合算子是什么”的内容了,经过本文的学习后,相信大家对flink中的聚合算子是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


新闻标题:flink中的聚合算子是什么
文章分享:http://njwzjz.com/article/pieode.html