网站建设资讯

NEWS

网站建设资讯

包含python函数修饰器的词条

python中修饰器是什么?

就是一个callable object。 它使python编程更加容易。

创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的凤泉网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

例如:

@dec

def A(args):

pass

它就等价于dec(A). 当然还有带参数的decorator。我就不举例了。

python文档里有这样一句话。

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked with the function object as the only argument. The returned value is bound to the function name instead of the function object. Multiple decorators are applied in nested fashion.

大概就是说函数的定义可以用多个decorator。decorator就在函数定义时用函数作为参数调用,然后返回一个可调用对象。 所以写decorator的时候一定要返回一个可调用对象。

不知道你明白没。

python装饰器函数只能定义在类中吗

为什么属性装饰器使用类级别的函数定义,而不是模块级的定义?

我将属性装饰器应用于一些模块级函数,认为它们将允许我仅通过属性查找来调用方法。在

这一点特别诱人,因为我定义了一组配置函数,比如get_port,get_hostname,等等,所有这些函数都可以用它们更简单、更简洁的属性对应项:port,hostname,等等

因此,config.get_port()会更好config.port

当我发现以下回溯,证明这不是一个可行的选择时,我很惊讶:

TypeError: int() argument must be a string or a number, not 'property'

我知道我在模块级看到了一些类似属性功能的先驱者,因为我曾用它编写shell命令的脚本,使用优雅但粗糙的pbs library。在

下面有趣的破解可以在pbs library source code中找到。它允许在模块级别执行类似属性的属性查找,但它非常、非常粗糙。在

^{pr2}$

下面是将这个类插入导入命名空间的代码。它实际上是直接修补sys.modules!在

# we're being run as a stand-alone script, fire up a REPL

if __name__ == "__main__":

globs = globals()

f_globals = {}

for k in ["__builtins__", "__doc__", "__name__", "__package__"]:

f_globals[k] = globs[k]

env = Environment(f_globals)

run_repl(env)

# we're being imported from somewhere

else:

self = sys.modules[__name__]

sys.modules[__name__] = SelfWrapper(self)

关于python修饰器调用报错问题

你装饰器的用法不对,你要的功能大概的写法如下:

====

def tsfun(func, *args, **kwargs):

print "%s,%s, called" %(ctime(),func.__name__)

func(*args, **kwargs)

python装饰器有什么用

先来个形象比方

内裤可以用来遮羞,但是到了冬天它没法为我们防风御寒,聪明的人们发明了长裤,有了长裤后宝宝再也不冷了,装饰器就像我们这里说的长裤,在不影响内裤作用的前提下,给我们的身子提供了保暖的功效。

再回到我们的主题

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

先来看一个简单例子:

def foo():

print('i am foo')

现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码:

def foo():

print('i am foo')

logging.info("foo is running")

bar()、bar2()也有类似的需求,怎么做?再写一个logging在bar函数里?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门处理日志 ,日志处理完之后再执行真正的业务代码

def use_logging(func):

logging.warn("%s is running" % func.__name__)

func()def bar():

print('i am bar')use_logging(bar)

逻辑上不难理解,

但是这样的话,我们每次都要将一个函数作为参数传递给use_logging函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行bar(),但是现在不得不改成use_logging(bar)。那么有没有更好的方式的呢?当然有,答案就是装饰器。

简单装饰器

def use_logging(func):

def wrapper(*args, **kwargs):

logging.warn("%s is running" % func.__name__)

return func(*args, **kwargs)

return wrapperdef bar():

print('i am bar')bar = use_logging(bar)bar()

函数use_logging就是装饰器,它把执行真正业务方法的func包裹在函数里面,看起来像bar被use_logging装饰了。在这个例子中,函数进入和退出时

,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。

@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作

def use_logging(func):

def wrapper(*args, **kwargs):

logging.warn("%s is running" % func.__name__)

return func(*args)

return wrapper@use_loggingdef foo():

print("i am foo")@use_loggingdef bar():

print("i am bar")bar()

如上所示,这样我们就可以省去bar =

use_logging(bar)这一句了,直接调用bar()即可得到想要的结果。如果我们有其他的类似函数,我们可以继续调用装饰器来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。

装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

带参数的装饰器

装饰器还有更大的灵活性,例如带参数的装饰器:在上面的装饰器调用中,比如@use_logging,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

def use_logging(level):

def decorator(func):

def wrapper(*args, **kwargs):

if level == "warn":

logging.warn("%s is running" % func.__name__)

return func(*args)

return wrapper

return decorator@use_logging(level="warn")def foo(name='foo'):

print("i am %s" % name)foo()

上面的use_logging是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当我

们使用@use_logging(level="warn")调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。

类装饰器

再来看看类装饰器,相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的\_\_call\_\_方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

class Foo(object):

def __init__(self, func):

self._func = func

def __call__(self):

print ('class decorator runing')

self._func()

print ('class decorator ending')

@Foo

def bar():

print ('bar')

bar()

functools.wraps

使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

装饰器

def logged(func):

def with_logging(*args, **kwargs):

print func.__name__ + " was called"

return func(*args, **kwargs)

return with_logging

函数

@loggeddef f(x):

"""does some math"""

return x + x * x

该函数完成等价于:

def f(x):

"""does some math"""

return x + x * xf = logged(f)

不难发现,函数f被with_logging取代了,当然它的docstring,__name__就是变成了with_logging函数的信息了。

print f.__name__    # prints 'with_logging'print f.__doc__     # prints None

这个问题就比较严重的,好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。

from functools import wrapsdef logged(func):

@wraps(func)

def with_logging(*args, **kwargs):

print func.__name__ + " was called"

return func(*args, **kwargs)

return with_logging@loggeddef f(x):

"""does some math"""

return x + x * xprint f.__name__  # prints 'f'print f.__doc__   # prints 'does some math'

内置装饰器

@staticmathod、@classmethod、@property

装饰器的顺序

@a@b@cdef f ():

等效于

f = a(b(c(f)))


名称栏目:包含python函数修饰器的词条
网站地址:http://njwzjz.com/article/phhood.html