网站建设资讯

NEWS

网站建设资讯

spark3.0.1集成delta0.7.0之delta如何进行DDL操作

小编给大家分享一下spark 3.0.1集成delta 0.7.0之delta如何进行DDL操作,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

10余年的延津网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整延津建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“延津网站设计”,“延津网站推广”以来,每个客户项目都认真落实执行。

分析

delta在0.7.0以前是不能够进行save表操作的,只能存储到文件中,也就是说他的元数据是和spark的其他元数据是分开的,delta是独立存在的,也是不能和其他表进行关联操作的,只有到了delta 0.7.0版本以后,才真正意义上和spark进行了集成,这也得益于spark 3.x的Catalog plugin API 特性。
还是先从delta的configurate sparksession入手,如下:

import org.apache.spark.sql.SparkSession

val spark = SparkSession
  .builder()
  .appName("...")
  .master("...")
  .config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension")
  .config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog")
  .getOrCreate()

对于第二个配置 config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") 从spark configuration,我们可以看到对该spark.sql.catalog.spark_catalog的解释是

A catalog implementation that will be used as the v2 interface to Spark's built-in v1 catalog: spark_catalog. This catalog shares its identifier namespace with the spark_catalog and must be consistent with it; for example, if a table can be loaded by the spark_catalog, this catalog must also return the table metadata. To delegate operations to the spark_catalog, implementations can extend 'CatalogExtension'.

也就是说,通过该配置可以实现元数据的统一性,其实这也是spark社区和delta社区进行交互的一种结果

spark 3.x的Catalog plugin API

为了能搞懂delta为什么能够进行DDL和DML操作,就得先知道spark 3.x的Catalog plugin机制SPARK-31121.

首先是interface CatalogPlugin,该接口是catalog plugin的顶级接口,正如注释所说:

 * A marker interface to provide a catalog implementation for Spark.
 * 

 * Implementations can provide catalog functions by implementing additional interfaces for tables,  * views, and functions.  * 

 * Catalog implementations must implement this marker interface to be loaded by  * {@link Catalogs#load(String, SQLConf)}. The loader will instantiate catalog classes using the  * required public no-arg constructor. After creating an instance, it will be configured by calling  * {@link #initialize(String, CaseInsensitiveStringMap)}.  * 

 * Catalog implementations are registered to a name by adding a configuration option to Spark:  * {@code spark.sql.catalog.catalog-name=com.example.YourCatalogClass}. All configuration properties  * in the Spark configuration that share the catalog name prefix,  * {@code spark.sql.catalog.catalog-name.(key)=(value)} will be passed in the case insensitive  * string map of options in initialization with the prefix removed.  * {@code name}, is also passed and is the catalog's name; in this case, "catalog-name".

可以通过spark.sql.catalog.catalog-name=com.example.YourCatalogClass集成到spark中
该类的实现还可以集成其他额外的tables views functions的接口,这里就得提到接口TableCatalog,该类提供了与tables相关的方法:

/**
   * List the tables in a namespace from the catalog.
   * 

   * If the catalog supports views, this must return identifiers for only tables and not views.    *    * @param namespace a multi-part namespace    * @return an array of Identifiers for tables    * @throws NoSuchNamespaceException If the namespace does not exist (optional).    */   Identifier[] listTables(String[] namespace) throws NoSuchNamespaceException;   /**    * Load table metadata by {@link Identifier identifier} from the catalog.    * 

   * If the catalog supports views and contains a view for the identifier and not a table, this    * must throw {@link NoSuchTableException}.    *    * @param ident a table identifier    * @return the table's metadata    * @throws NoSuchTableException If the table doesn't exist or is a view    */   Table loadTable(Identifier ident) throws NoSuchTableException;

这样就可以基于TableCatalog开发自己的catalog,从而实现multi-catalog support

还得有个接口DelegatingCatalogExtension,这是个实现了CatalogExtension接口的抽象类,而CatalogExtension继承了TableCatalog, SupportsNamespaces。DeltaCatalog实现了DelegatingCatalogExtension ,这部分后续进行分析。
最后还有一个class CatalogManager,这个类是用来管理CatalogPlugins的,且是线程安全的:

/**
 * A thread-safe manager for [[CatalogPlugin]]s. It tracks all the registered catalogs, and allow
 * the caller to look up a catalog by name.
 *
 * There are still many commands (e.g. ANALYZE TABLE) that do not support v2 catalog API. They
 * ignore the current catalog and blindly go to the v1 `SessionCatalog`. To avoid tracking current
 * namespace in both `SessionCatalog` and `CatalogManger`, we let `CatalogManager` to set/get
 * current database of `SessionCatalog` when the current catalog is the session catalog.
 */
// TODO: all commands should look up table from the current catalog. The `SessionCatalog` doesn't
//       need to track current database at all.
private[sql]
class CatalogManager(
    conf: SQLConf,
    defaultSessionCatalog: CatalogPlugin,
    val v1SessionCatalog: SessionCatalog) extends Logging {

我们看到CatalogManager管理了v2版本的 CatalogPlugin和v1版本的sessionCatalog,这个是因为历史的原因导致必须得兼容v1版本

那CatalogManager在哪里被调用呢。 我们看一下BaseSessionStateBuilder ,可以看到该类中才是正宗使用CatalogManager的地方:

/**
   * Catalog for managing table and database states. If there is a pre-existing catalog, the state
   * of that catalog (temp tables & current database) will be copied into the new catalog.
   *
   * Note: this depends on the `conf`, `functionRegistry` and `sqlParser` fields.
   */
  protected lazy val catalog: SessionCatalog = {
    val catalog = new SessionCatalog(
      () => session.sharedState.externalCatalog,
      () => session.sharedState.globalTempViewManager,
      functionRegistry,
      conf,
      SessionState.newHadoopConf(session.sparkContext.hadoopConfiguration, conf),
      sqlParser,
      resourceLoader)
    parentState.foreach(_.catalog.copyStateTo(catalog))
    catalog
  }

  protected lazy val v2SessionCatalog = new V2SessionCatalog(catalog, conf)

  protected lazy val catalogManager = new CatalogManager(conf, v2SessionCatalog, catalog)

SessionCatalog 是v1版本的,主要是跟底层的元数据存储通信,以及管理临时视图,udf的,这一部分暂时不分析,重点放到v2版本的sessionCatalog, 我们看一下V2SessionCatalog:

/**
 * A [[TableCatalog]] that translates calls to the v1 SessionCatalog.
 */
class V2SessionCatalog(catalog: SessionCatalog, conf: SQLConf)
  extends TableCatalog with SupportsNamespaces {
  import org.apache.spark.sql.connector.catalog.CatalogV2Implicits.NamespaceHelper
  import V2SessionCatalog._

  override val defaultNamespace: Array[String] = Array("default")

  override def name: String = CatalogManager.SESSION_CATALOG_NAME

  // This class is instantiated by Spark, so `initialize` method will not be called.
  override def initialize(name: String, options: CaseInsensitiveStringMap): Unit = {}

  override def listTables(namespace: Array[String]): Array[Identifier] = {
    namespace match {
      case Array(db) =>
        catalog
          .listTables(db)
          .map(ident => Identifier.of(Array(ident.database.getOrElse("")), ident.table))
          .toArray
      case _ =>
        throw new NoSuchNamespaceException(namespace)
    }
  }

我们分析一下listTables方法可知,v2的sessionCatalog操作 都是委托给了v1版本的sessionCatalog去操作的,其他的方法也是一样, 而且name默认为CatalogManager.SESSION_CATALOG_NAME,也就是spark_catalog,这里后面也会提到,注意一下。 而且,catalogmanager在逻辑计划中的分析器和优化器中也会用到,因为会用到其中的元数据:

protected def analyzer: Analyzer = new Analyzer(catalogManager, conf) {
...
protected def optimizer: Optimizer = {
    new SparkOptimizer(catalogManager, catalog, experimentalMethods) {
      override def earlyScanPushDownRules: Seq[Rule[LogicalPlan]] =
        super.earlyScanPushDownRules ++ customEarlyScanPushDownRules

      override def extendedOperatorOptimizationRules: Seq[Rule[LogicalPlan]] =
        super.extendedOperatorOptimizationRules ++ customOperatorOptimizationRules
    }
  }

而analyzer和optimizer正是spark sql进行解析的核心中的核心,当然还有物理计划的生成。 那这些analyzer和optimizer是在哪里被调用呢?
我们举一个例子,DataSet中的filter方法就调用了:

 */
  def filter(conditionExpr: String): Dataset[T] = {
    filter(Column(sparkSession.sessionState.sqlParser.parseExpression(conditionExpr)))
  }

sessionState.sqlParser就是刚才所说的sqlParser:

protected lazy val sqlParser: ParserInterface = {
    extensions.buildParser(session, new SparkSqlParser(conf))
  }

只有整个逻辑 从sql解析到使用元数据的数据链路,我们就能大致知道怎么一回事了。

delta的DeltaCatalog

我们回过头来看看,delta的DeltaCatalog是怎么和spark 3.x进行结合的 ,上源码DeltaCatalog:

class DeltaCatalog(val spark: SparkSession) extends DelegatingCatalogExtension
  with StagingTableCatalog
  with SupportsPathIdentifier {

  def this() = {
    this(SparkSession.active)
  }
  ...

就如之前所说的DeltaCatalog继承了DelegatingCatalogExtension,从名字可以看出这是一个委托类,那到底是怎么委托的呢以及委托给谁呢?

public abstract class DelegatingCatalogExtension implements CatalogExtension {

  private CatalogPlugin delegate;

  public final void setDelegateCatalog(CatalogPlugin delegate) {
    this.delegate = delegate;
  }

该类中有个setDelegateCatalog方法,该方法在CatalogManager中的loadV2SessionCatalog方法中被调用:

private def loadV2SessionCatalog(): CatalogPlugin = {
    Catalogs.load(SESSION_CATALOG_NAME, conf) match {
      case extension: CatalogExtension =>
        extension.setDelegateCatalog(defaultSessionCatalog)
        extension
      case other => other
    }
  }

而该方法被v2SessionCatalog调用:

private[sql] def v2SessionCatalog: CatalogPlugin = {
    conf.getConf(SQLConf.V2_SESSION_CATALOG_IMPLEMENTATION).map { customV2SessionCatalog =>
      try {
        catalogs.getOrElseUpdate(SESSION_CATALOG_NAME, loadV2SessionCatalog())
      } catch {
        case NonFatal(_) =>
          logError(
            "Fail to instantiate the custom v2 session catalog: " + customV2SessionCatalog)
          defaultSessionCatalog
      }
    }.getOrElse(defaultSessionCatalog)
  }

这个就是返回默认的v2版本的SessionCatalog实例,分析一下这个方法:

   首先得到配置项SQLConf.V2_SESSION_CATALOG_IMPLEMENTATION,也就是spark.sql.catalog.spark_catalog配置,
   如果spark配置了的话,就调用loadV2SessionCatalog加载该类,,否则就加载默认的v2SessionCatalog,也就是V2SessionCatalog实例

这里我们就发现了:
delta配置的spark.sql.catalog.spark_catalog为"org.apache.spark.sql.delta.catalog.DeltaCatalog",也就是说,spark中的V2SessionCatalog是DeltaCatalog的实例,而DeltaCatalog的委托给了BaseSessionStateBuilder中的V2SessionCatalog实例。

具体看看DeltaCatalog 的createTable方法,其他的方法类似:

override def createTable(
      ident: Identifier,
      schema: StructType,
      partitions: Array[Transform],
      properties: util.Map[String, String]): Table = {
    if (DeltaSourceUtils.isDeltaDataSourceName(getProvider(properties))) {
      createDeltaTable(
        ident, schema, partitions, properties, sourceQuery = None, TableCreationModes.Create)
    } else {
      super.createTable(ident, schema, partitions, properties)
    }
  }
...
private def createDeltaTable(
      ident: Identifier,
      schema: StructType,
      partitions: Array[Transform],
      properties: util.Map[String, String],
      sourceQuery: Option[LogicalPlan],
      operation: TableCreationModes.CreationMode): Table = {
     ...
    val tableDesc = new CatalogTable(
      identifier = TableIdentifier(ident.name(), ident.namespace().lastOption),
      tableType = tableType,
      storage = storage,
      schema = schema,
      provider = Some("delta"),
      partitionColumnNames = partitionColumns,
      bucketSpec = maybeBucketSpec,
      properties = tableProperties.toMap,
      comment = Option(properties.get("comment")))
    // END: copy-paste from the super method finished.

    val withDb = verifyTableAndSolidify(tableDesc, None)
    ParquetSchemaConverter.checkFieldNames(tableDesc.schema.fieldNames)
    CreateDeltaTableCommand(
      withDb,
      getExistingTableIfExists(tableDesc),
      operation.mode,
      sourceQuery,
      operation,
      tableByPath = isByPath).run(spark)

    loadTable(ident)
      }
 override def loadTable(ident: Identifier): Table = {
    try {
      super.loadTable(ident) match {
        case v1: V1Table if DeltaTableUtils.isDeltaTable(v1.catalogTable) =>
          DeltaTableV2(
            spark,
            new Path(v1.catalogTable.location),
            catalogTable = Some(v1.catalogTable),
            tableIdentifier = Some(ident.toString))
        case o => o
      }
    
  }
  • 判断是否是delta数据源,如果是的话,跳到createDeltaTable方法,否则直接调用super.createTable方法,

  • createDeltaTable先会进行delta特有的CreateDeltaTableCommand.run()命令写入delta数据,之后载loadTable

  • loadTable则会调用super的loadTable,而方法会调用V2SessionCatalog的loadTable,而V2SessionCatalog最终会调用v1版本sessionCatalog的getTableMetadata方法,从而组成V1Table(catalogTable)返回,这样就把delta的元数据信息持久化到了v1 SessionCatalog管理的元数据库中

  • 如果不是delta数据源,则调用super.createTable方法,该方法调用V2SessionCatalog的createTable,而最终还是调用v1版本sessionCatalog的createTable方法

我们这里重点分析了delta数据源到元数据的存储,非delta数据源的代码就没有粘贴过来,有兴趣的自己可以编译源码跟踪一下

我们还得提一下spark.sql.defaultCatalog的默认配置为spark_catalog,也就是sql的默认catalog为spark_catalog,对应到delta的话就是DeltaCatalog。

以上是“spark 3.0.1集成delta 0.7.0之delta如何进行DDL操作”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


分享文章:spark3.0.1集成delta0.7.0之delta如何进行DDL操作
网页路径:http://njwzjz.com/article/jgsesh.html