这篇文章主要讲解了“如何理解并实现索引的原理和优化”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何理解并实现索引的原理和优化”吧!
创新互联是专业的曲周网站建设公司,曲周接单;提供网站制作、成都网站设计,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行曲周网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
Kafka 和 MySQL 虽然最终数据都是落磁盘,但是两者在用途和数据查询方式上有着很大的差异,所以决定了数据的存储结构不同,进而决定了索引的复杂程度。
我们先看下kafka的存储结构:
由于 kafka 的定位是进行稳定的高性能数据读写。所以对磁盘来说,是采用顺序读写的方式,落在了一些 .log 文件中,并以基准偏移量补0命名。
为了实现高速查找 kafka 创建了稀疏索引文件(隔一段数据创建一条,而非全量),即index文件。其中维护消息的 offset 和 .log文件的物理位置。通过二分查找快速定位log文件并顺序扫描找到目标。
所以,kafka的索引组织方式是相对简单、方案相对固定,但MySQL却不行。Mysql是关系型数据库,是为了支持复杂的业务数据查询而创建的,查询方式、数据获取需求多种多样,要求MySQL具备更加复杂的索引机制来加速复杂业务查询场景。
以InnoDB存储引擎来看mysql数据存储:
参考了三本资料,基本把最重要的部分都概括了
数据被分了多个逻辑层:行->页->区块->段->表空间。
我们知道,InnoDB存储引擎表是Index organized的(数据即索引,索引即数据),他们都维护在一个B+树上,数据段就是叶子节点,索引段就是非叶子节点;
而我们划分的段、区块 其实都是为了利用操作系统的资源(比如每次从磁盘加载到内存的数据大小按区块来约定等等`)来达到更高效读写的目的,逻辑划分的。
其中页是MySQL和磁盘交互的最小单位,怎么从页找到行,怎么聚合到块、到段再到空间呢。
从上面总图中摘出一条记录的结构如下图:
我们可以看到,记录头中除了行号,还有下一条记录的标识next_record,所以,我们可以通过next_record将记录连接起来,以单向链表的形式,所以这就决定了,当我们在记录链中寻找某记录时,只能顺序遍历,这也决定了一条数据链不会太长。
但一个页默认是16K,加上行溢出等处理,一页最多存放7992行记录,这么多的记录,必须顺序遍历么?当然不需要,让我看看页是怎么组织记录行的。
作为与磁盘交互的最小单位,是用来存放实际数据的(页类型是b-tree Node存真实数据,还有其他类型如索引目录页等用来加速查询)从上面的大图中可以大致看到一个页的整体结构:
让我们来看几个关键的字段参数:
Page Directory 决定着记录项在页内的查询效率
为了更快速的查询,页目录存储的本页的数据目录(槽),包含最大最小记录和 分组数据链的最大记录的偏移量。方便使用二分法快速查找数据,不需要再从最小值开始遍历,如下图:
图片来自《从根儿上理解 MySQL》
File Header决定页和页之间怎样关联
记录本页的一些通用信息,主要包含< 本页页号、上一页、下一页、页类型、所属表空间等等>。
通过页号来找到本页、通过上下页进行双向链表串联、通过类型判断是索引页还是数据页。。。
图片来自《从根儿上理解 MySQL》
此字段决定了页和页之间可以很方便的通过上述属性进行关联。
Page Header决定页的层级
存储的本页的数据信息,主要包含**<** 本页记录数量、在B+树中的层级、归属的索引ID、插入方向、最大事务ID等等 >。
有了页面的数据组织概念,那么,怎么利用这些结构来实现的数据快速查询呢?
从上面的数据组织的知识里可以看到,行记录之间串联成单向链表,在每页中都按分组方式分布在此页的最小记录和最大记录之间。
页面之间通过上一页、下一页的指针,串联成双向链表,在磁盘中进行存储,如下图:
那么,要查询一条记录,可以怎么做?
如上图所示的数据串联方式,自然的提供了一种查询方式:即按主键顺序遍历每页和页中的记录行。
但是,这样的查询方式,除了在页内有二分优化,再无效率可言。怎么办?
寻求改进:既然页内的行记录可以分组入槽,那数据页之间为什么不行呢?
我们将页向上聚蔟,构建一个页号目录,先在目录中查找,再到对应页中查找,就比顺序查找要快很多了。
寻求改进:这样的方式所需大量连续空间 + 目录会随数据变动而频繁变动,怎么办?
其实,在叙述行记录结构的时候,我们就看到,数据行的结构中,除了实际业务数据外,还有很多额外空间。
如record_type用来表示该记录的类型是数据还是索引。正是这些额外的空间的设计,给InnoDB以更加适合的方式组织索引提供了支持:
图片来自《从根儿上理解 MySQL》
这就是一棵B+树,页节点有层级区分,页中的行记录有类型区分。
业务数据都包含在叶子节点中,目录数据都包含在其他非叶节点中。
这样组织方式的优势,是允许足够少的层级容纳足够多的数据项(可以简单的假设每一页的数据项大小来预估)。
而这个索引方式就是我们常说的聚蔟索引。即使用主键值进行记录和页的排序,且叶子节点含有全部用户数据。
寻求改进:如果我想用其他列来查询,怎么办?
二级索引
比如用户需要根据某一列(a列)的值来查询,那就再重新创建一个B+树。此索引树和聚蔟索引树的差别在于,索引节点是以a列的值为目录,且叶子节点只包含a列的值和主键两个值。
如果用户需要查询除c列以外的更多信息,则需要拿主键ID再去聚蔟索引查一次,也叫回表。
联合索引
二级索引是除主键外的单列索引,而联合索引则是多个列共同排序。假设用户需要用a 、b 两个列进行有序查询,那内在含义是,在a列值相同的情况下,再判断b的值。
同二级索引一样,InnoDB也需要再创建一棵B+树,且目录项的排序按先a,后b进行排序串联,叶子节点的数据项只包含 a 、b、主键三个值。
系统需要定时的捞取特定时间段内特定状态、特定类型、特定操作者的任务进行定时处理。
select * from task where status=x and operator_id=xxxx and operate_time>xxxxxxxx01 and operate_time开发发现此sql运行的越来越慢,希望给每个字段加二级索引,被优化师叫停,而是考虑的该表所有查询方式后,创建了一个联合索引:
(status,operator_id,type,operate_time)为什么不建多个的二级索引?为什么范围查询的字段要放在最后?
分析:
(1)从前面的原理部分我们知道,索引是要占内存的,不是越多越好,能起作用就行。
(2)用于范围匹配的字段的索引位置要严谨。因为创建索引的时候,根据索引字段的顺序来进行排序,如果把time字段放在type字段前面建索引,在查询时,因为time是一个范围值,那么多个time值延续到type字段,整体是无序的,无法用到type索引。
8蚂蚁分布式主事务表的索引运用
蚂蚁的分布式事务中的主事务表起到了维护整体事务状态的作用,其中包含了整体事务状态、操作时间等字段。而在业务支付发生异常,且实时回滚失败时,需要事务恢复系统从远程捞取前1分钟的异常数据,并捞取对应的分支记录表发起异步回滚。
考虑查询效率,查询sql会限定业务发生时间在[前10分钟,前1分钟],是有范围查询,所以,针对其他字段,业务时间的索引顺序需要置于联合索引的最后。此操作的原理和上一部分美团定时任务的原理是一样的。
9阿里开发手册中几条典型的规范[4]
【强制】 在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度。
原理关联:字段越长,索引占内存越多,只要其长度可以保证区分度即可
【强制】 字符搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
原理关联:左模糊的字段不是有序的,无法用到索引
【推荐】 如果有 order by 的场景,请注意利用索引的有序性。order by 最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现 file_sort 的情况,影响查询性能。
原理关联:如果条件中有范围查询,则后续字段是无序的,order by时无法用到索引
【推荐】 建组合索引的时候,区分度最高的在最左边。
原理关联:区分度越高,查询路径越短,效率越高
感谢各位的阅读,以上就是“如何理解并实现索引的原理和优化”的内容了,经过本文的学习后,相信大家对如何理解并实现索引的原理和优化这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
文章标题:如何理解并实现索引的原理和优化
文章出自:http://njwzjz.com/article/ipocsg.html