网站建设资讯

NEWS

网站建设资讯

自研nosql,自研和外包的区别

为什么只有阿里云和AWS拥有自研云数据库的能力?

很多国产数据库乘风破浪

10年积累的网站设计制作、成都做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站制作后付款的网站建设流程,更有东区免费网站建设让你可以放心的选择与我们合作。

我们正处在一个数据库技术大爆炸的时代。

这几年,NoSQL数据库、NewSQL数据库、时序数据库、图数据库、分布式数据库、超融合数据库等专业数据库技术发展势头很猛,国产数据库的表现也相当亮眼。

过去十年,是互联网发展的黄金十年。与此对应的是业务系统访问并发呈指数级上升,海量数据计算和分析需求越来越普遍,传统单机系统在业务支撑、成本、开放性等方面均面临巨大挑战,数据库垂直扩展模式难以维护等困境。

眼看着数据库性能瓶颈快要扼住发展的喉咙,摆在这些长久依赖Oracle、IBM等传统数据库的巨头们面前的,只有两条路:要么开启无限加量的PLUS模式,即更换更多更强的服务器、硬盘、内存、CPU等,要么自研能满足业务发展需求的数据库。

开拓者们的眼光一开始就聚焦在更长远的未来,他们发现即便是系统变成真正的“傻大粗”,也只是解了燃眉之急,不能从源头解决问题。

再看一眼像Oracle、IBM等传统数据库高昂的拓容价格,像阿里这样的富一代也吃不消哇!

那么,自研数据库,走起!

2010年后,云计算和开源社区兴起,国产数据库开始了弯道超车。

2019年被认为是国产数据库的元年。

这一年,众多国产数据库产品闯入了我们的视线,热度不断攀升;这一年,OceanBase登顶TPCC,并于一年后再次刷新自己的记录。

从刀耕火种到摘下Oracle在数据库领域的皇冠,国产数据库经历的是一段不被理解和不被看好的岁月。

在国外数据库先驱长期占据市场优势的情况下,国产数据库要想杀出重围,一是要付出多倍努力,二是要拿出更强的产品才能在客户面前更有底气。

当然,国产数据库发展至今,已然是百花齐放。未来,国产数据库的发展趋势相对也比较明显,即往云原生和分布式发展。

金融级分布式数据库应运而生

数字时代,数据成为各家必争之地。

在金融应用场景下,国内数据库市场于近几年开始发生变化。

随着应用层和业务层的压力加大,金融机构对分布式技术架构转型的需求应运而生。

作为软件系统的三大底层技术(操作系统、中间件、数据库)之一,数据库成为系统往分布式架构转型的枢纽。

不过,在早年国外传统数据库厂商盘根错节的“蚕食”下,这个核心变得又硬又难啃!

面对如今市场的需求变化,传统数据库系统呈现出一个通病:又笨重又贵。

再是,随着诸如2013年“棱镜门”事件的爆发,各界越来越重视数据安全和技术自主可控。

此外,金融机构对快速、灵活、可伸缩性、创新、敏捷等开发能力需求大大提升,出于对长期IT建设的成本考虑,自主可控更是成为他们出于自身长远发展考量的刚需。

数字化时代,金融机构的整体架构正处于往分布式、云原生、微服务等方向发展的关键时刻,数据库的选型便显得至关重要。

根据中国人民银行发布的《金融 科技 (FinTech)发展规划(2019-2021年)》,我国将有计划、分步骤地稳妥推动分布式数据库产品先行先试,形成可借鉴、能推广的典型案例和解决方案,为分布式数据库在金融领域的全面应用探明路径,确保分布式数据库在金融领域稳妥应用。

目前已有不少业界实践证明了分布式数据库应用于金融场景的可靠性。同时,金融级分布式数据库云化已经在路上。

五大数据库理念,读懂亚马逊云科技的数据库布局

1970 年,关系型数据库之父 E.F.Codd 发表《用于大型共享数据库的关系数据模型》论文,正式拉开数据库技术发展序幕。以 Oracle、DB2、SQL Server 为代表的三大商业数据库产品独占鳌头,随后涌现出 MySQL、PostgreSQL 等为代表的开源数据库 ,和以 Amazon RDS 等为代表的云数据库,拉开百花齐放的数据库新序幕。

我们知道,云计算十年为产业转型升级提供了 历史 性契机,但变革仍在进行,随着云计算的普及,数据库市场发生根本性改变,云厂商打破传统商业数据库的堡垒,成为数据库领域全新力量。其中以连续六年入选 Gartner 领导者象限的亚马逊云 科技 为代表,我们一起探讨:为什么亚马逊云 科技 能始终保持其创新性?纵观云原生时代下,亚马逊云 科技 数据库未来还有哪些更多的可能性?

01 面对四大数据库发展趋势,亚马逊云 科技 打造五大数据库理念

后疫情时代下,加速了不少行业的业务在线化和数字化运营,企业对数据价值挖掘的需求越发强烈,亚马逊云 科技 大中华区产品部总经理顾凡详细介绍其中四大趋势:

一是伴随互联网、移动互联网的发展,电商、视频、社交、出行等新应用场景的兴起,不仅数据量大,对数据实时性要求极高,传统关系型数据库无法满足需求,因此驱动云原生数据库的出现。

二是开源数据库的广泛应用。

三是应用程序现代化对数据库提出更高要求,期待数据库拥有更高的性能、可扩展性、可用性以及降低成本,让开发人员专注于核心业务的应用开发,不用关注和核心业务无关的代码。

四是软件架构历经 PC、互联网、移动互联网,再到如今的万物互联时代,其中的迭代和转型正在驱动数据库选型的变化。

在此四大趋势下,伴随企业的业务量越来越大、越来越复杂,对数据库的要求越来越高。亚马逊云 科技 洞察客户需求,在打造云上数据库产品时提出五大理念:

一是专库专用,极致性能;二是无服务器,敏捷创新;第三是全球架构,一键部署;第四是平滑迁移,加速上云;第五是 AI 赋能,深度集成。

02 历经真实锤炼,五大数据库理念,持续赋能企业数智转型

顾凡表示,随着数据爆炸式增长,微服务架构与 DevOps 愈发流行的今天,一个数据库打天下的时代已然过去。我们需要在不同的应用场景下,针对不同的数据类型和不同的数据访问特点,为开发者和企业提供专门构建的工具。

所以亚马逊云 科技 提出 第一个核心数据库理念:专库专用 。在此理念下,推出针对关系数据、键值数据、文档数据、内存数据、图数据、时许数据、分类账数据、宽列等专门构建数据库的产品家族。

这些数据库产品均经历过亚马逊内部核心业务的真实锤炼,成绩斐然:

亚马逊电商当年是 Oracle 的客户之一,随着亚马逊电商的应用重构和业务体量发展,亚马逊电商决定将业务迁移到亚马逊云 科技 里。100 多个团队参与这庞大的迁移工作中,将亚马逊电商采购、目录管理、订单执行、广告、财务系统、钱包、视频流等关键系统全部从 Oracle 迁出来。2019 年,亚马逊将存储近 7500 个Oracle 数据库中的 75 PB 内部数据迁移到多项亚马逊云 科技 的数据库服务中,包括 Amazon DynamoDB、Amazon Aurora、Amazon ElastiCache,于是亚马逊电商成为亚马逊云 科技 在全球的“第一大客户”。

从 Oracle 切换到亚马逊云 科技 后,亚马逊电商节省了 60% 成本,面向消费者端的应用程序延迟降低 40%,数据库管理支出减少 70%。

以被誉为“亚马逊云 科技 历史 上用户数量增速最快的云服务”Amazon Aurora 为例,其拥有科媲美高端商业数据库的速度和可用性,还拥有开源数据库的简单性与成本效益,Amazon Aurora 让客户满足“鱼和熊掌兼得”需求。

据顾凡介绍,Amazon Aurora 可提供 5 倍于标准 MySQL 性能,3 倍于 PostgreSQL 吞吐量。同时提供高可用,可用区(AZ)+1的高可用,Global Databases 可完成跨区域灾备。可扩展到 15 个只读副本,成本只有商业数据库的 1/10。

医药企业九州通为药厂、供应商,搭建药厂、供应商、消费者提供供应链链条。其 B2B 系统的业务特点是读多写少,受促销活动、工作时间等影响,经常会出现波峰波谷落差较大的情况,读写比例在 7:2 或者 8:3。九州通采用 Amazon Aurora 后实现读写分离和按需扩展,整体数据库性能提升 5 倍,TCO 降低 50%。实现了跨可用区部署、负载均衡、自动故障转移、精细监控、按需自动伸缩等。

据权威机构预测,到 2022 年,75% 数据库将被部署或迁移至云平台。在这个过程中,亚马逊云 科技 是如何通过技术来帮助客户加速应用上云的?这离不开除了上述的“专库专用”外,以下四大理念:

第二个理念是无服务器、敏捷创新。 亚马逊云 科技 大中华区产品部数据类产品高级经理王晓野表示,企业业务总有波峰波谷之时,如何按照企业 80-90% 的业务峰值来规划数据库的存储容量和计算资源的话,将给应用带来一定的业务连续性的妥协和挑战。因此大多数企业都是按照峰值留有余地来选择数据库的计算资源,这将造成成本上的浪费。而 Serverless 数据库服务可完成无差别的繁复工作和自动化扩展。

Amazon DynamoDB 是亚马逊云 科技 自研 Serverless 数据库,其诞生最早可追溯到 2004 年,当时亚马逊电商作为 Oracle 的客户,尽管对于关系型数据库在零售场景的需求并不频繁,70% 均是键值类操作,此时倒逼亚马逊电商思考:为什么要把关系型数据库这么重得使用?我们可以设计一款支持读写、可横向扩展的分布式数据库吗?后来的故事大家都知道了,这款数据库就是 Amazon DynamoDB,并在 2007 年发表论文,掀起业界 NoSQL 分布式数据库技术创新大潮。

Amazon DynamoDB 可为大规模应用提供支持,支撑亚马逊自身多个高流量网站和系统,如亚马逊电商网站、亚马逊全球 442 个物流中心等。在亚马逊电商一年一度 Prime Day,光是针对DynamoDB API 的调用达到数万亿次,最高峰值请求达到每秒 8920 万次。由此可见,DynamoDB 拥有高吞吐、扩展性、一致性、可预测响应延迟、高可用等优势。

智能可穿戴设备厂商华米 科技 ,在全球 70 多个国家拥有近 1 亿用户。仅 2020 年上半年,其手表出货量超 174 万台,截止到 2021 年 2 月,华米 科技 的可穿戴设备累计记录步数是 151 万步,累计记录的睡眠时间是 128 亿个夜晚,记录心率总时长达 1208 亿个小时。如此庞大的数据同时必须保证极高的安全性和低延迟相应,如何保证稳定性是巨大的挑战。

DynamoDB 帮助华米 科技 在任何规模下都能提供延迟不超过 10 毫秒的一致响应时间。华米 科技 健康 云的 P0 和 P1 级别故障减少了约 30%,总体服务可用性提升了 0.25%,系统可用性指标达到 99.99%,为华为 科技 全球化扩展提供了有力的支撑。

最新无服务数据库产品是 Amazon Aurora Serverless V2 提供瞬间扩展能力,真正把扩展能力发挥到极致,在不到一秒的时间内,将几百个事务扩展到数十万的级别。同时在扩展时每一次调整的增量都是非常精细化的去管理,如果按照峰值来规划数据库资源,可实现大概90%的成本节省。目前 Amazon Aurora Serverless V2 在全球实现预览。

第三个理念是全球架构、一键部署。 在全球化的今天,如何支撑全球客户的业务扩展连续性、一致性、以最低延迟带给到终端客户上,对数据库提出新的挑战。

亚马逊云 科技 提供 Amazon Aurora 关系型数据库Global Database、Amazon DynamoDB、Amazon ElastiCache 内存数据库、Amazon DocumentDB 文档数据库都能利用亚马逊云 科技 的骨干网络提供比互联网更稳定的网络支撑,以一键部署的方式,帮助客户实现几千公里跨区域数据库灾备,故障恢复大概能在一分钟之内完成,同时跨区域的数据复制延迟通常小于一秒。

第四个理念是平滑迁移、加速上云。 目前,450000+ 数据库通过亚马逊云 科技 数据库迁移服务迁移到亚马逊云 科技 中,这个数字每年都在不断增长。亚马逊云 科技 提供 Amazon DMS、Amazon Database Migration Service 等工具让开发者和企业进行自助式云迁移。另外,对于迁移过程中可能会需要的支持,可通过专业服务团队和合作伙伴网络成员,为客户提供专业支持,还通过 Database Freedom 项目帮助客户降低他们的顾虑。

今年 11 月,最新产品 Babelfish for Amazon Aurora PostgreSQL 在全球和中国两个区域正式可用,可加速企业上云的迁移,实现让企业可以利用原有的技术栈、原有的 SQL Server T-SQL的人员可以利用到云数据库进行创新。

第五个理念是 AI赋能,深度集成。 我们观察到,ML 技术赋能数据库开发者,开发者无需具备机器学习专业知识,就可进行机器学习操作。在此潮流下,亚马逊云 科技 推出 Amazon Neptune,借由 Deep Graph Library 和 Amazon SageMaker 驱动图神经网络。

今年 8 月,Neptune ML 在中国正式可用,允许数据工程师不需要掌握机器学习的技能直接从图数据库里导出数据、转换格式、训练模型并发布,用 gremlin 语句调用训练成的模型在数据库里实现推理,进行欺诈检测,推荐物品。

目前,亚马逊云 科技 加速在中国区域服务落地,2021年至今新发布 60 多个数据库服务与功能。亚马逊云 科技 正是通过上述五大数据库理念,打造丰富的数据库产品家族,在全球智能化发展趋势下,为企业提供更快更好的数智服务,释放数据价值,并连续六年入选 Gartner 领导者象限,得到业界和客户的深度认可。

阿里IM技术分享(六):闲鱼亿级IM消息系统的离线推送到达率优化

本文由阿里闲鱼技术团队逸昂分享,原题“消息链路优化之弱感知链路优化”,有修订和改动,感谢作者的分享。

闲鱼的IM消息系统作为买家与卖家的沟通工具,增进理解、促进信任,对闲鱼的商品成交有重要的价值,是提升用户体验最关键的环节。

然而,随着业务体量的快速增长,当前这套消息系统正面临着诸多急待解决的问题。

以下几个问题典型最为典型:

1) 在线消息的体验提升;

2) 离线推送的到达率;

3) 消息玩法与消息底层系统的耦合过强。

经过评估,我们认为现阶段离线推送的到达率问题最为关键,对用户体验影响较大。

本文将要分享的是闲鱼IM消息在解决离线推送的到达率方面的技术实践,内容包括问题分析和技术优化思路等 ,希望能带给你启发。

(本文已同步发布于:  )

本文是系列文章的第6篇,总目录如下:

《 阿里IM技术分享(一):企业级IM王者——钉钉在后端架构上的过人之处 》

《 阿里IM技术分享(二):闲鱼IM基于Flutter的移动端跨端改造实践 》

《 阿里IM技术分享(三):闲鱼亿级IM消息系统的架构演进之路 》

《 阿里IM技术分享(四):闲鱼亿级IM消息系统的可靠投递优化实践 》

《 阿里IM技术分享(五):闲鱼亿级IM消息系统的及时性优化实践 》

《 阿里IM技术分享(六):闲鱼亿级IM消息系统的离线推送到达率优化 》(* 本文)

从数据通信链接的技术角度,我们根据闲鱼客户端是否在线,将整体消息链路大致分为强感知链路和弱感知链路。

强感知链路由以下子系统或模块:

1) 发送方客户端;

2) idleapi-message(闲鱼的消息网关);

3) heracles(闲鱼的消息底层服务);

4) accs(阿里自研的长连接通道);

5) 接收方客户端组成。

整条链路的核心指标在于端到端延迟和消息到达率。

强感知链路中的双方都是在线的,消息到达客户端就可以保证接收方感知到。强感知链路的主要痛点在消息的端到端延迟。

弱感知链路与强感知链路的主要不同在于: 弱感知链路的接收方是离线的,需要依赖离线推送这样的方式送达。

因此弱感知链路的用户感知度不强,其核心指标在于消息的到达率,而非延迟。

所以当前阶段,优化弱感知链路的重点也就是提升离线消息的到达率。换句话说, 提升离线消息到达率问题,也就是优化弱感知链路本身 。

下图一张整个IM消息系统的架构图,感受下整体链路:

如上图所示,各主要组件和子系统分工如下:

1) HSF是一个远程服务框架,是dubbo的内部版本;

2) tair是阿里自研的分布式缓存框架,支持 memcached、Redis、LevelDB 等不同存储引擎;

3) agoo是阿里的离线推送中台,负责整合不同厂商的离线推送通道,向集团用户提供一个统一的离线推送服务;

4) accs是阿里自研的长连接通道,为客户端、服务端的实时双向交互提供便利;

5) lindorm是阿里自研的NoSQL产品,与HBase有异曲同工之妙;

6) 域环是闲鱼消息优化性能的核心结构,用来存储用户最新的若干条消息。

强感知链路和弱感知链路在通道选择上是不同的:

1) 强感知链路使用accs这个在线通道;

2) 弱感知链路使用agoo这个离线通道。

通俗了说,弱感知链路指的就是离线消息推送系统。

相比较于在线消息和端内推送(也就是上面说的强感知链路),离线推送难以确保被用户感知到。

典型的情况包括:

1) 未发送到用户设备:即推送未送达用户设备,这种情况可以从通道的返回分析;

2) 发送到用户设备但没有展示到系统通知栏:闲鱼曾遇到通道返回成功,但是用户未看到推送的案例;

3) 展示到通知栏,并被系统折叠:不同安卓厂商对推送的折叠策略不同,被折叠后,需用户主动展开才能看到内容,触达效果明显变差;

4) 展示到通知栏,并被用户忽略:离线推送的点击率相比于在线推送更低。

针对“1)未发送到用户设备”,原因有:

1) 离线通道的token失效;

2) 参数错误;

3) 用户关闭应用通知;

4) 用户已卸载等。

针对“3)展示到通知栏,并被系统折叠”,原因有:

1) 通知的点击率;

2) 应用在厂商处的权重;

3) 推送的数量等。

针对“4)展示到通知栏,并被用户忽略”,原因有:

1) 用户不愿意查看推送;

2) 用户看到了推送,但是对内容不感兴趣;

3) 用户在忙别的事,无暇处理。

总之: 以上这些离线消息推送场景,对于用户来说感知度不高,我们也便称之为弱感知链路。

我们的弱感知链路分为3部分,即:

1) 系统;

2) 通道;

3) 用户。

共包含了Hermes、agoo、厂商、设备、用户、承接页这几个环节。具体如下图所示。

从推送的产生到用户最终进入APP,共分为如下几个步骤:

步骤1 :Hermes是闲鱼的用户触达系统,负责人群管理、内容管理、时机把控,是整个弱感知链路的起点。;

步骤2 :agoo是阿里内部承接离线推送的中台,是闲鱼离线推送能力的基础;

步骤3 :agoo实现离线推送依靠的是厂商的推送通道(如:苹果的 apns通道 、Google的fcm通道、及 国内各厂商的自建通道 。;

步骤4 :通过厂商的通道,推送最终出现在用户的设备上,这是用户能感知到推送的前提条件;

步骤5 :如果用户刚巧看到这条推送,推送的内容也很有趣,在用户的主动点击下会唤起APP,打开承接页,进而给用户展示个性化的商品。

经过以上5个步骤,至此弱感知链路就完成了使命。

弱感知链路的核心问题在于:

1) 推送的消息是否投递给了用户;

2) 已投递到的消息用户是否有感知。

这对应推送的两个阶段:

1) 推送消息是否已到达设备;

2) 用户是否查看推送并点击。

其中: 到达设备这个阶段是最基础的,也是本次优化的核心。

我们可以将每一步的消息处理量依次平铺,展开为一张漏斗图,从而直观的查看链路的瓶颈。

漏斗图斜率最大的地方是优化的重点,差异小的地方不需要优化:

通过分析以上漏斗图,弱感知链路的优化重点在三个方面:

1) agoo受理率:是指我们发送推送请到的数量到可以通过agoo(阿里承接离线推送的中台)转发到厂商通道的数量之间的漏斗;

2) 厂商受理率:是指agoo中台受理的量到厂商返回成功的量之间的漏斗;

3) Push点击率:也就通过以上通道最终已送到到用户终端的消息,是否最终转化为用户的主动“点击”。

有了优化方向,我们来看看优化手段吧。

跟随推送的视角,顺着链路看一下我们是如何进行优化的。

用户的推送,从 Hermes 站点搭乘“班车”,驶向下一站:  agoo 。

这是推送经历的第一站。到站一看,傻眼了,只有不到一半的推送到站下车了。这是咋回事嘞?

这就要先说说 agoo 了,调用 agoo 有两种方式:

1) 指定设备和客户端,agoo直接将推送投递到相应的设备;

2) 指定用户和客户端,agoo根据内部的转换表,找到用户对应的设备,再进行投递。

我们的系统不保存用户的设备信息。因此,是按照用户来调用agoo的。

同时: 由于没有用户的设备信息,并不知道用户是 iOS 客户端还是 Android 客户端。工程侧不得不向 iOS 和 Android 都发送一遍推送。虽然保证了到达,但是,一半的调用都是无效的。

为了解这个问题: 我们使用了agoo的设备信息。将用户转换设备这一阶段提前到了调用 agoo 之前,先明确用户对应的设备,再指定设备调用 agoo,从而避免无效调用。

agoo调用方式优化后,立刻剔除了无效调用,agoo受理率有了明显提升。

至此: 我们总算能对 agoo 受理失败的真正原因做一个高大上的分析了。

根据统计: 推送被 agoo 拒绝的主要原因是——用户关闭了通知权限。同时,我们对 agoo 调用数据的进一步分析发现——有部分用户找不到对应的设备。 优化到此,我们猛然发现多了两个问题。

那就继续优化呗:

1) 通知体验优化,引导打开通知权限;

2) 与agoo共建设备库,解决设备转换失败的问题。

这两个优化方向又是一片新天地,我们择日再聊。

推送到达 agoo ,分机型搭乘厂商“专列”,驶向下一站:用户设备。

这是推送经历的第二站。出站查票,发现竟然超员了。

于是乎: 我们每天有大量推送因为超过厂商设定的限额被拦截。

为什么会这样呢?

实际上: 提供推送通道的厂商(没错, 各手机厂商的自家推送通道良莠不齐 ),为了保证用户体验,会对每个应用能够推送的消息总量进行限制。

对于厂商而言,这个限制会根据推送的类型和应用的用户规模设定——推送主要分为产品类的推送和营销类的推送。

厂商推送通道对于不同类型消息的限制是:

1) 对于产品类推送,厂商会保证到达;

2) 对于营销类推送,厂商会进行额度限制;

3) 未标记的推送,默认作为营销类推送对待。

我们刚好没有对推送进行标记,因此触发了厂商的推送限制。

这对我们的用户来说,会带来困扰。闲鱼的交易,很依赖买卖家之间的消息互动。这部分消息是需要确保到达的。

同样: 订单类的消息、用户的关注,也需要保证推送给用户。

根据主流厂商的接口协议,我们将推送的消息分为以下几类,并进行相应标记:

1) 即时通讯消息;

2) 订单状态变化;

3) 用户关注内容;

4) 营销消息这几类。

同时,在业务上,我们也进行了推送的治理——将用户关注度不高的消息,取消推送,避免打扰。

经过这些优化,因为超过厂商限额而被拦截的推送实现了清零。

通过优化agoo受理率、厂商受理率,我们解决了推送到达量的瓶颈。但即使消息被最终送达,用户到底点击了没有?这才是消息推送的根本意义所在。

于是,在日常的开发测试过程中,我们发现了推送的两个体验问题:

1) 用户点击Push有开屏广告;

2) 营销Push也有权限校验,更换用户登陆后无法点击。

对于开屏广告功能,我们增加了Push点击跳过广告的能力。

针对Push的权限校验功能,闲鱼根据场景做了细分:

1) 涉及个人隐私的推送,保持权限校验不变;

2) 营销类的推送,放开权限校验。

以上是点击体验的优化,我们还需要考虑用户的点击意愿。

用户点击量与推送的曝光量、推送素材的有趣程度相关。推送的曝光量又和推送的到达量、推送的到达时机有关。

具体的优化手段是:

1) 在推送内容上:我们需要优化的是推送的时机和相应的素材;

2) 在推送时机上:算法会根据用户的偏好和个性化行为数据,计算每个用户的个性化推送时间,在用户空闲的时间推送(避免在不合适的时间打扰用户,同时也能提升用户看到推送的可能性)。

3) 在推送素材上:算法会根据素材的实时点击反馈,对素材做实时赛马。只发用户感兴趣的素材,提高用户点击意愿。

通过以上我们的分析和技术优化手段,整体弱推送链路链路有了不错的提升,离线消息的到达率相对提升了两位数。

本篇主要和大家聊的是只是IM消息系统链路中的一环——弱感知链路的优化,落地到到具体的业务也就是离线消息送达率问题。

整体IM消息系统,还是一个比较复杂的领域。

我们在消息系统的发展过程中,面临着如下问题:

1) 如何进行消息的链路追踪;

2) 如何保证IM消息的快速到达(见《 闲鱼亿级IM消息系统的及时性优化实践 》);

3) 如何将消息的玩法和底层能力分离;

4) 离线推送中如何通过用户找到对应的设备。

这些问题,我们在以前的文章中有所分享,以后也会陆续分享更多,敬请期待。

[1]  Android P正式版即将到来:后台应用保活、消息推送的真正噩梦

[2]  一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践

[3]  一套亿级用户的IM架构技术干货(上篇):整体架构、服务拆分等

[4]  一套亿级用户的IM架构技术干货(下篇):可靠性、有序性、弱网优化等

[5]  从新手到专家:如何设计一套亿级消息量的分布式IM系统

[6]  企业微信的IM架构设计揭秘:消息模型、万人群、已读回执、消息撤回等

[7]  融云技术分享:全面揭秘亿级IM消息的可靠投递机制

[8]  移动端IM中大规模群消息的推送如何保证效率、实时性?

[9]  现代IM系统中聊天消息的同步和存储方案探讨

[10]  新手入门一篇就够:从零开发移动端IM

[11]  移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”

[12]  移动端IM开发者必读(二):史上最全移动弱网络优化方法总结

[13]  IM消息送达保证机制实现(一):保证在线实时消息的可靠投递

[14]  IM消息送达保证机制实现(二):保证离线消息的可靠投递

[15]  零基础IM开发入门(一):什么是IM系统?

[16]  零基础IM开发入门(二):什么是IM系统的实时性?

[17]  零基础IM开发入门(三):什么是IM系统的可靠性?

[18]  零基础IM开发入门(四):什么是IM系统的消息时序一致性?

(本文已同步发布于:  )

2019数据架构选型必读:1月数据库产品技术解析

本期目录

DB-Engines数据库排行榜

新闻快讯

一、RDBMS家族

二、NoSQL家族

三、NewSQL家族

四、时间序列

五、大数据生态圈

六、国产数据库概览

七、云数据库

八、推出dbaplus Newsletter的想法

九、感谢名单

为方便阅读、重点呈现,本期Newsletter(2019年1月)将对各个板块的内容进行精简。需要阅读全文的同学可点击文末 【阅读原文】 或登录

进行下载。

DB-Engines数据库排行榜

以下取自2019年1月的数据,具体信息可以参考,数据仅供参考。

DB-Engines排名的数据依据5个不同的因素:

新闻快讯

1、2018年9月24日,微软公布了SQL Server2019预览版,SQL Server 2019将结合Spark创建统一数据平台。

2、2018年10月5日,ElasticSearch在美国纽约证券交易所上市。

3、亚马逊放弃甲骨文数据库软件,导致最大仓库之一在黄金时段宕机。受此消息影响,亚马逊盘前股价小幅跳水,跌超2%。

4、2018年10月31日,Percona发布了Percona Server 8.0 RC版本,发布对MongoDB 4.0的支持,发布对XtraBackup测试第二个版本。

5、2018年10月31日,Gartner陆续发布了2018年的数据库系列报告,包括《数据库魔力象限》、《数据库核心能力》以及《数据库推荐报告》。

今年的总上榜数据库产品达到了5家,分别来自:阿里云,华为,巨杉数据库,腾讯云,星环 科技 。其中阿里云和巨杉数据库已经连续两年入选。

6、2018年11月初,Neo4j宣布完成E轮8000万美元融资。11月15日,Neo4j宣布企业版彻底闭源:

7、2019年1月8日,阿里巴巴以1.033亿美元(9000万欧元)的价格收购了Apache Flink商业公司DataArtisans。

8、2019年1月11日早间消息,亚马逊宣布推出云数据库软件,亚马逊和MongoDB将会直接竞争。

RDBMS家族

Oracle 发布18.3版本

2018年7月,Oracle Database 18.3通用版开始提供下载。我们可以将Oracle Database 18c视为采用之前发布模式的Oracle Database 12c第2版的第一个补丁集。未来,客户将不再需要等待多年才能用上最新版Oracle数据库,而是每年都可以期待新数据库特性和增强。Database 19c将于2019年Q1率先在Oracle cloud上发布云版本。

Oracle Database 18c及19c部分关键功能:

1、性能

2、多租户,大量功能增强及改进,大幅节省成本和提高敏捷性

3、高可用

4、数据仓库和大数据

MySQL发布8.0.13版本

1、账户管理

经过配置,修改密码时,必须带上原密码。在之前的版本,用户登录之后,就可以修改自己的密码。这种方式存在一定安全风险。比如用户登录上数据库后,中途离开一段时间,那么非法用户可能会修改密码。由参数password_require_current控制。

2、配置

Innodb表必须有主键。在用户没有指定主键时,系统会生成一个默认的主键。但是在主从复制的场景下,默认的主键,会对丛库应用速度带来致命的影响。如果设置sql_require_primary_key,那么数据库会强制用户在创建表、修改表时,加上主键。

3、字段默认值

BLOB、TEXT、GEOMETRY和JSON字段可以指定默认值了。

4、优化器

1)Skip Scan

非前缀索引也可以用了。

之前的版本,任何没有带上f1字段的查询,都没法使用索引。在新的版本中,它可以忽略前面的字段,让这个查询使用到索引。其实现原理就是把(f1 = 1 AND f2 40) 和(f1 = 2 AND f2 40)的查询结果合并。

2)函数索引

之前版本只能基于某个列或者多个列加索引,但是不允许在上面做计算,如今这个限制消除了。

5、SQL语法

GROUP BY ASC和GROUP BY DESC语法已经被废弃,要想达到类似的效果,请使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。

6、功能变化

1)设置用户变量,请使用SET语句

如下类型语句将要被废弃SELECT @var, @var:=@var+1。

2)新增innodb_fsync_threshold

该变量是控制文件刷新到磁盘的速率,防止磁盘在短时间内饱和。

3)新增会话级临时表空间

在以往的版本中,当执行SQL时,产生的临时表都在全局表空间ibtmp1中,及时执行结束,临时表被释放,空间不会被回收。新版本中,会为session从临时表空间池中分配一个临时表空间,当连接断开时,临时表空间的磁盘空间被回收。

4)在线切换Group Replication的状态

5)新增了group_replication_member_expel_timeout

之前,如果某个节点被怀疑有问题,在5秒检测期结束之后,那么就直接被驱逐出这个集群。即使该节点恢复正常时,也不会再被加入集群。那么,瞬时的故障,会把某些节点驱逐出集群。

group_replication_member_expel_timeout让管理员能更好的依据自身的场景,做出最合适的配置(建议配置时间小于一个小时)。

MariaDB 10.3版本功能展示

1、MariaDB 10.3支持update多表ORDER BY and LIMIT

1)update连表更新,limit语句

update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;

MySQL 8.0直接报错

MariaDB 10.3更新成功

2)update连表更新,ORDER BY and LIMIT语句

update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;

MySQL 8.0直接报错

MariaDB 10.3更新成功

参考:

2、MariaDB10.3增补AliSQL补丁——安全执行Online DDL

Online DDL从名字上看很容易误导新手,以为不论什么情况,修改表结构都不会锁表,理想很丰满,现实很骨感,注意这个坑!

有以下两种情况执行DDL操作会锁表的,Waiting for table metadata lock(元数据表锁):

针对第二种情况,MariaDB10.3增补AliSQL补丁-DDL FAST FAIL,让其DDL操作快速失败。

例:

如果线上有某个慢SQL对该表进行操作,可以使用WAIT n(以秒为单位设置等待)或NOWAIT在语句中显式设置锁等待超时,在这种情况下,如果无法获取锁,语句将立即失败。 WAIT 0相当于NOWAIT。

参考:

3、MariaDB Window Functions窗口函数分组取TOP N记录

窗口函数在MariaDB10.2版本里实现,其简化了复杂SQL的撰写,提高了可读性。

参考:

Percona Server发布8.0 GA版本

2018年12月21日,Percona发布了Percona Server 8.0 GA版本。

在支持MySQL8.0社区的基础版上,Percona Server for MySQL 8.0版本中带来了许多新功能:

1、安全性和合规性

2、性能和可扩展性

3、可观察性和可用性

Percona Server for MySQL 8.0中将要被废用功能:

Percona Server for MySQL 8.0中删除的功能:

RocksDB发布V5.17.2版本

2018年10月24日,RocksDB发布V5.17.2版本。

RocksDB是Facebook在LevelDB基础上用C++写的高效内嵌式K/V存储引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底层的存储都是基于RocksDB来构建。

PostgreSQL发布11版本

2018年10月18日,PostgreSQL 11发布。

1、PostgreSQL 11的重大增强

2、PostgreSQL 插件动态

1)分布式插件citus发布 8.1

citus是PostgreSQL的一款sharding插件,目前国内苏宁、铁总、探探有较大量使用案例。

2)地理信息插件postgis发布2.5.1

PostGIS是专业的时空数据库插件,在测绘、航天、气象、地震、国土资源、地图等时空专业领域应用广泛。同时在互联网行业也得到了对GIS有性能、功能深度要求的客户青睐,比如共享出行、外卖等客户。

3)时序插件timescale发布1.1.1

timescale是PostgreSQL的一款时序数据库插件,在IoT行业中有非常好的应用。github star数目前有5000多,是一个非常火爆的插件。

4)流计算插件 pipelinedb 正式插件化

Pipelinedb是PostgreSQL的一款流计算插件,使用这个创建可以对高速写入的数据进行实时根据定义的聚合规则进行聚合(支持概率计算),实时根据定义的规则触发事件(支持事件处理函数的自定义)。可用于IoT,监控,FEED实时计算等场景。

3、PostgreSQL衍生开源产品动态

1)agensgraph发布 2.0.0版本

agensgraph是兼容PostgreSQL、opencypher的专业图数据库,适合图式关系的管理。

2)gpdb发布5.15

gpdb是兼容PostgreSQL的mpp数据库,适合OLAP场景。近两年,gpdb一直在追赶PostgreSQL的社区版本,预计很快会追上10的PostgreSQL,在TP方面的性能也会得到显著提升。

3)antdb发布3.2

antdb是以Postgres-XC为基础开发的一款PostgreSQL sharding数据库,亚信主导开发,开源,目前主要服务于亚信自有客户。

4)迁移工具MTK发布52版本

MTK是EDB提供的可以将Oracle、PostgreSQL、MySQL、MSSQL、Sybase数据库迁移到PostgreSQL, PPAS的产品,迁移速度可以达到100万行/s以上。

DB2发布 11.1.4.4版本

DB2最新发布Mod Pack 4 and Fix Pack 4,包含以下几方面的改动及增强:

1、性能

2、高可用

3、管理视图

4、应用开发方面

5、联邦功能

6、pureScale

NoSQL家族

Redis发布5.0.3版本

MongoDB升级更新MongoDB Mobile和MongoDB Stitch

2018年11月21日,MongoDB升级更新MongoDB Mobile和MongoDB Stitch,助力开发人员提升工作效率。

MongoDB 公司日前发布了多项新产品功能,旨在更好地帮助开发人员在世界各地管理数据。通过利用存储在移动设备和后台数据库的数据之间的实时、自动的同步特性,MongoDB Mobile通用版本助力开发人员构建更快捷、反应更迅速的应用程序。此前,这只能通过在移动应用内部安装一个可供选择或限定功能的数据库来实现。

MongoDB Mobile在为客户提供随处运行的自由度方面更进了一步。用户在iOS和安卓终端设备上可拥有MongoDB所有功能,将网络边界扩展到其物联网资产范畴。应用系统还可以使用MongoDB Stitch的软件开发包访问移动客户端或后台数据,帮助开发人员通过他们希望的任意方式查询移动终端数据和物联网数据,包括本地读写、本地JSON存储、索引和聚合。通过Stitch移动同步功能(现可提供beta版),用户可以自动对保存在本地的数据以及后台数据库的数据进行同步。

本期新秀:Cassandra发布3.11.3版本

2018年8月11日,Cassandra发布正式版3.11.3。

Apache Cassandra是一款开源分布式NoSQL数据库系统,使用了基于Google BigTable的数据模型,与面向行(row)的传统关系型数据库或键值存储key-value数据库不同,Cassandra使用的是宽列存储模型(Wide Column Stores)。与BigTable和其模仿者HBase不同,数据并不存储在分布式文件系统如GFS或HDFS中,而是直接存于本地。

Cassandra的系统架构与Amazon DynamoDB类似,是基于一致性哈希的完全P2P架构,每行数据通过哈希来决定应该存在哪个或哪些节点中。集群没有master的概念,所有节点都是同样的角色,彻底避免了整个系统的单点问题导致的不稳定性,集群间的状态同步通过Gossip协议来进行P2P的通信。

3.11.3版本的一些bug fix和改进:

NewSQL家族

TiDB 发布2.1.2版本

2018 年 12 月 22 日,TiDB 发布 2.1.2 版,TiDB-Ansible 相应发布 2.1.2 版本。该版本在 2.1.1 版的基础上,对系统兼容性、稳定性做出了改进。

TiDB 是一款定位于在线事务处理/在线分析处理( HTAP: Hybrid Transactional/Analytical Processing)的融合型数据库产品。除了底层的 RocksDB 存储引擎之外,分布式SQL层、分布式KV存储引擎(TiKV)完全自主设计和研发。

TiDB 完全开源,兼容MySQL协议和语法,可以简单理解为一个可以无限水平扩展的MySQL,并且提供分布式事务、跨节点 JOIN、吞吐和存储容量水平扩展、故障自恢复、高可用等优异的特性;对业务没有任何侵入性,简化开发,利于维护和平滑迁移。

TiDB:

PD:

TiKV:

Tools:

1)TiDB-Lightning

2)TiDB-Binlog

EsgynDB发布R2.5版本

2018年12月22日,EsgynDB R2.5版本正式发布。

作为企业级产品,EsgynDB 2.5向前迈进了一大步,它拥有以下功能和改进:

CockroachDB发布2.1版本

2018年10月30日,CockroachDB正式发布2.1版本,其新增特性如下:

新增企业级特性:

新增SQL特性:

新增内核特性:

Admin UI增强:

时间序列

本期新秀:TimescaleDB发布1.0版本

10月底,TimescaleDB 1.0宣布正式推出,官方表示该版本已可用于生产环境,支持完整SQL和扩展。

TimescaleDB是基于PostgreSQL数据库开发的一款时序数据库,以插件化的形式打包提供,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。

TimescaleDB架构:

数据自动按时间和空间分片(chunk)

更新亮点:

大数据生态圈

Hadoop发布2.9.2版本

2018年11月中旬,Hadoop在2.9分支上发布了新的2.9.2版本,该版本进行了204个大大小小的变更,主要变更如下:

Greenplum 发布5.15版本

Greenplum最新的5.15版本中发布了流式数据加载工具。

该版本中的Greenplum Streem Server组件已经集成了Kafka流式加载功能,并通过了Confluent官方的集成认证,其支持的主要功能如下:

国产数据库概览

K-DB发布数据库一体机版

2018年11月7日,K-DB发布了数据库一体机版。该版本更新情况如下:

OceanBase迁移服务发布1.0版本

1月4日,OceanBase 正式发布OMS迁移服务1.0版本。

以下内容包含 OceanBase 迁移服务的重要特性和功能:

SequoiaDB发布3.0.1新版本

1、架构

1)完整计算存储分离架构,兼容MySQL协议、语法

计算存储分离体系以松耦合的方式将计算与存储层分别部署,通过标准接口或插件对各个模块和组件进行无缝替换,在计算层与存储层均可实现自由的弹性伸缩。

SequoiaDB巨杉数据库“计算-存储分离”架构详细示意

用户可以根据自身业务特征选择面向交易的SQL解析器(例如MySQL或PGSQL)或面向统计分析的执行引擎(例如SparkSQL)。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,在计算层面则利用每种执行引擎的特点针对不同业务场景进行选择和优化,用户可以在存储层进行逻辑与物理的隔离,将面向高频交易的前端业务与面向高吞吐量的统计分析使用不同的硬件进行存储,确保在多类型数据访问时互不干扰,以真正达到生产环境可用的多租户与HTAP能力。

2、其他更新信息

1)接口变更:

2)主要特性:

云数据库

本期新秀:腾讯发布数据库CynosDB,开启公测

1、News

1)腾讯云数据库MySQL2018年重大更新:

2)腾讯云数据库MongoDB2018年重大更新:

3)腾讯云数据库Redis/CKV+2018年重大更新:

4)腾讯云数据库CTSDB2018年重大更新:

2、Redis 4.0集群版商业化上线

2018年10月,腾讯云数据库Redis 4.0集群版完成邀测、公测、商业化三个迭代,在广州、上海、北京正式全量商业化上线。

产品特性:

使用场景:

官网文档:

3、腾讯自研数据库CynosDB发布,开启公测

2018年11月22日,腾讯云召开新一代自研数据库CynosDB发布会,业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。

本期新秀:京东云DRDS发布1.0版本

12月24日,京东云分布式关系型数据库DRDS正式发布1.0版本。

DRDS是京东云精心自研的数据库中间件产品,获得了2018年 ”可信云技术创新奖”。DRDS可实现海量数据下的自动分库分表,具有高性能,分布式,弹性升级,兼容MySQL等优点,适用于高并发、大规模数据的在线交易, 历史 数据查询,自动数据分片等业务场景,历经多次618,双十一的考验,已经在京东集团内大规模使用。

京东云DRDS产品有以下主要特性

1)自动分库分表

通过简单的定义即可自动实现分库分表,将数据实际存放在多个MySQL实例的数据库中,但呈现给应用程序的依旧是一张表,对业务透明,应用程序几乎无需改动,实现了对数据库存储和处理能力的水平扩展。

2)分布式架构

基于分布式架构的集群方案,多个对等节点同时对外提供服务,不但可有效规避服务的单点故障,而且更加容易扩展。

3)超强性能

具有极高的处理能力,双节点即可支持数万QPS,满足用户超大规模处理能力的需求。

4)兼容MySQL

兼容绝大部分MySQL语法,包括MySQL语法、数据类型、索引、常用函数、排序、关联等DDL,DML语句,使用成本低。

参考链接:

RadonDB发布1.0.3版本

2018年12月26日,MyNewSQL领域的RadonDB云数据库发布1.0.3版本。

推出dbaplus Newsletter的想法

dbaplus Newsletter旨在向广大技术爱好者提供数据库行业的最新技术发展趋势,为社区的技术发展提供一个统一的发声平台。为此,我们策划了RDBMS、NoSQL、NewSQL、时间序列、大数据生态圈、国产数据库、云数据库等几个版块。

我们不以商业宣传为目的,不接受任何商业广告宣传,严格审查信息源的可信度和准确性,力争为大家提供一个纯净的技术学习环境,欢迎大家监督指正。

至于Newsletter发布的周期,目前计划是每三个月左右会做一次跟进, 下期计划时间是2019年4月14日~4月25日, 如果有相关的信息提供请发送至邮箱:newsletter@dbaplus.cn

感谢名单

最后要感谢那些提供宝贵信息和建议的专家朋友,排名不分先后。

往期回顾:

↓↓别忘了点这里下载 2019年1月 完整版Newsletter 哦~


网页标题:自研nosql,自研和外包的区别
文章转载:http://njwzjz.com/article/hooesj.html