网站建设资讯

NEWS

网站建设资讯

go语言byte类型 golang byte类型

Golang bytes.buffer详解

Buffer 介绍

成都创新互联公司专注于石景山网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供石景山营销型网站建设,石景山网站制作、石景山网页设计、石景山网站官网定制、微信平台小程序开发服务,打造石景山网络公司原创品牌,更为您提供石景山网站排名全网营销落地服务。

Buffer 是 bytes 包中的一个 type Buffer struct{…}

A buffer is a variable-sized buffer of bytes with Read and Write methods. The zero value for Buffer is an empty buffer ready to use.

(是一个变长的 buffer,具有 Read 和Write 方法。 Buffer 的 零值 是一个 空的 buffer,但是可以使用)

Buffer 就像一个集装箱容器,可以存东西,取东西(存取数据)

创建缓冲器

输出

写入到缓冲器

buffer在new的时候是空的,也是可以直接Write的

Write

结果

WriteString

结果

WriteByte

WriteRune

结果

从缓冲器中写出

读出缓冲器

Read

ReadByte

返回缓冲器头部的第一个byte

ReadRun

ReadRune方法,返回缓冲器头部的第一个rune

为什么n==3,而n1==1呢?我们看下ReadRune 的源码

ReadBytes

ReadBytes方法,需要一个byte作为分隔符,读的时候从缓冲器里找出第一个出现的分隔符,缓冲器头部开始到分隔符之间的byte返回。

相当于有一个分隔符

ReadString

和readBytes方法类似

读入缓冲器

ReadFrom方法,从一个实现io.Reader接口的r,把r的内容读到缓冲器里,n返回读的数量

从缓冲器取出

Next方法,返回前n个byte(slice),原缓冲器变

缓冲区原理介绍

go字节缓冲区底层以字节切片做存储,切片存在长度len与容量cap, 缓冲区写从长度len的位置开始写,当lencap时,会自动扩容。缓冲区读会从内置标记off位置开始读(off始终记录读的起始位置),当off==len时,表明缓冲区已全部读完

并重置缓冲区(len=off=0),此外当将要内容长度+已写的长度(即len) = cap/2时,缓冲区前移覆盖掉已读的内容(off=0,len-=off),从避免缓冲区不断扩容

数据段保存有如下字符串:string byte

string是Go语言中的基础数据类型。

声明string变量非常简单,常见的方式有以下两种:

声明一个空字符串后再赋值。

var s string。

s = "hello world"。

需要注意的是空字符只是长度为0,但不是nil。不存在值为nil的string。

使用简短变量声明:

s := "hello world" //直接初始化字符串。

双引号与单引号。

字符串不仅可以使用双引号赋值,也可以使用反单引号赋值,它们的区别是在于对特殊字符的处理。

假如我们希望string变量表示下面的字符串,它包括换行符和双引号:

Hi。

this is "Steven"。

1。

2。

使用双引号表示时,需要对特殊字符转义,如下所示:

s:= "Hi, \nthis is \"Steven\"."。

1。

如果使用反单引号时,不需要对特殊符号转义,如下所示:

s := Hi。

this is "Steven"。

需要注意的是,字符串拼接会触发内存分配以及内存拷贝,单行语句拼接多个字符串只分配一次内存。比如上面的语句中,在拼接时,会先计算最终字符串的长度后再分配内存。

类型转换:

项目中,数据经常需要在string和字节[]byte之间转换。

Go语言中的字节序

Go中的binary包实现了简单的数字与字节序列的转换以及变长值的编解码

package main

import ( "fmt" "bytes" "encoding/binary" ) func main(){ n := 0x12345678 bytesBuffer := bytes.NewBuffer([]byte{}) //BigEndian 大端顺序存储 LittleEndian小端顺序存储 binary.Write(bytesBuffer, binary.BigEndian, int32(n)) data:=bytesBuffer.Bytes() fmt.Printf("[0]: %#x addr:%#x\n",data[0],data[0]) fmt.Printf("[0]: %#x addr:%#x\n",data[1],data[1]) fmt.Printf("[0]: %#x addr:%#x\n",data[2],data[2]) fmt.Printf("[0]: %#x addr:%#x\n",data[3],data[3]) }

输出

[0]: 0x12 addr:0xc042010248 [1]: 0x34 addr:0xc042010249 [2]: 0x56 addr:0xc04201024a [3]: 0x78 addr:0xc04201024b

也可以使用下面的方式

n := 0x12345678 var data []byte = make([]byte,4) //操作的都是无符号整型 binary.BigEndian.PutUint32(data,uint32(n))

可以使用下面的方式判断当前系统的字节序类型

const INT_SIZE int = int(unsafe.Sizeof(0))

//判断我们系统中的字节序类型 func systemEdian() { var i int = 0x1 bs := (*[INT_SIZE]byte)(unsafe.Pointer(i)) if bs[0] == 0 { fmt.Println("system edian is little endian") } else { fmt.Println("system edian is big endian") } }

请Golang深度用户说说,现在Golang的性能可以和C比吗

不可以,完全没有可比性。

Golang的优势是开发速度,C可以自由、精准的操控内存。

拿string类型举个栗子:

1、修改字符串:

golang:需要分配新内存,然后进行内存copy。

c:可直接修改,可realloc。

2、存一段data:

golang:使用[]byte类型,[]byte转成string需要进行内存拷贝(排除掉利用指针进行类型转换的情况)。

c:直接用char[],可读可写。

golang中为了语言的安全性,类似的这种限制有很多,牺牲了一部分性能。但golang的优势也是显而易见的,goroutine、chan都很好用,而c则需要自己进行进程、线程的管控。

Golang的数据类型

1.按长度:int8(-128-127)、int16、int32、int64

2.无符号整型:uint8(0-255)、uint16、uint32、uint64

int:  32位操作系统上就是int32,64位操作系统上就是int64

uint: 32位操作系统上就是uint32,64位操作系统上就是uint64

float32      float64

complex64和complex128

bool

string

byte  和  rune

go语言string之Buffer与Builder

操作字符串离不开字符串的拼接,但是Go中string是只读类型,大量字符串的拼接会造成性能问题。

拼接字符串,无外乎四种方式,采用“+”,“fmt.Sprintf()”,"bytes.Buffer","strings.Builder"

上面我们创建10万字符串拼接的测试,可以发现"bytes.Buffer","strings.Builder"的性能最好,约是“+”的1000倍级别。

这是由于string是不可修改的,所以在使用“+”进行拼接字符串,每次都会产生申请空间,拼接,复制等操作,数据量大的情况下非常消耗资源和性能。而采用Buffer等方式,都是预先计算拼接字符串数组的总长度(如果可以知道长度),申请空间,底层是slice数组,可以以append的形式向后进行追加。最后在转换为字符串。这申请了不断申请空间的操作,也减少了空间的使用和拷贝的次数,自然性能也高不少。

bytes.buffer是一个缓冲byte类型的缓冲器存放着都是byte

是一个变长的 buffer,具有 Read 和Write 方法。 Buffer 的 零值 是一个 空的 buffer,但是可以使用,底层就是一个 []byte, 字节切片。

向Buffer中写数据,可以看出Buffer中有个Grow函数用于对切片进行扩容。

从Buffer中读取数据

strings.Builder的方法和bytes.Buffer的方法的命名几乎一致。

但实现并不一致,Builder的Write方法直接将字符拼接slice数组后。

其没有提供read方法,但提供了strings.Reader方式

Reader 结构:

Buffer:

Builder:

可以看出Buffer和Builder底层都是采用[]byte数组进行装载数据。

先来说说Buffer:

创建好Buffer是一个empty的,off 用于指向读写的尾部。

在写的时候,先判断当前写入字符串长度是否大于Buffer的容量,如果大于就调用grow进行扩容,扩容申请的长度为当前写入字符串的长度。如果当前写入字符串长度小于最小字节长度64,直接创建64长度的[]byte数组。如果申请的长度小于二分之一总容量减去当前字符总长度,说明存在很大一部分被使用但已读,可以将未读的数据滑动到数组头。如果容量不足,扩展2*c + n 。

其String()方法就是将字节数组强转为string

Builder是如何实现的。

Builder采用append的方式向字节数组后添加字符串。

从上面可以看出,[]byte的内存大小也是以倍数进行申请的,初始大小为 0,第一次为大于当前申请的最大 2 的指数,不够进行翻倍.

可以看出如果旧容量小于1024进行翻倍,否则扩展四分之一。(2048 byte 后,申请策略的调整)。

其次String()方法与Buffer的string方法也有明显区别。Buffer的string是一种强转,我们知道在强转的时候是需要进行申请空间,并拷贝的。而Builder只是指针的转换。

这里我们解析一下 *(*string)(unsafe.Pointer(b.buf)) 这个语句的意思。

先来了解下unsafe.Pointer 的用法。

也就是说,unsafe.Pointer 可以转换为任意类型,那么意味着,通过unsafe.Pointer媒介,程序绕过类型系统,进行地址转换而不是拷贝。

即*A = Pointer = *B

就像上面例子一样,将字节数组转为unsafe.Pointer类型,再转为string类型,s和b中内容一样,修改b,s也变了,说明b和s是同一个地址。但是对s重新赋值后,意味着s的地址指向了“WORLD”,它们所使用的内存空间不同了,所以s改变后,b并不会改变。

所以他们的区别就在于 bytes.Buffer 是重新申请了一块空间,存放生成的string变量, 而strings.Builder直接将底层的[]byte转换成了string类型返回了回来,去掉了申请空间的操作。


当前文章:go语言byte类型 golang byte类型
本文网址:http://njwzjz.com/article/hgpepg.html