网站建设资讯

NEWS

网站建设资讯

python数学函数根号 python计算根号方程

python如何求平方根

1:二分法

创新互联专注为客户提供全方位的互联网综合服务,包含不限于做网站、成都网站制作、双流网络推广、重庆小程序开发公司、双流网络营销、双流企业策划、双流品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联为所有大学生创业者提供双流建站搭建服务,24小时服务热线:18980820575,官方网址:www.cdcxhl.com

求根号5

a:折半:       5/2=2.5

b:平方校验:  2.5*2.5=6.255,并且得到当前上限2.5

c:再次向下折半:2.5/2=1.25

d:平方校验:1.25*1.25=1.56255,得到当前下限1.25

e:再次折半:2.5-(2.5-1.25)/2=1.875

f:平方校验:1.875*1.875=3.5156255,得到当前下限1.875

每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:

代码如下:

import math

from math import sqrt

def sqrt_binary(num):

x=sqrt(num)

y=num/2.0

low=0.0

up=num*1.0

count=1

while abs(y-x)0.00000001:

print count,y

count+=1

if (y*ynum):

up=y

y=low+(y-low)/2

else:

low=y

y=up-(up-y)/2

return y

print(sqrt_binary(5))

print(sqrt(5))

2:牛顿迭代

仔细思考一下就能发现,我们需要解决的问题可以简单化理解。

从函数意义上理解:我们是要求函数f(x) = x²,使f(x) = num的近似解,即x² - num = 0的近似解。

从几何意义上理解:我们是要求抛物线g(x) = x² - num与x轴交点(g(x) = 0)最接近的点。

我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:

从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。

python的开根号可以用**1/2

使用Python中的自带库math、自带函数pow和自带库cmath来对数字进行开根号运算

根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。

若a_=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用n√ ̄表示 ,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。

python中如何进行开方运算

1、python中使用pow函数求n的n方根。首先打开python的编辑器,新建一个python 3的文件:

2、pow函数的用法很简单,只要传入待开方的数,以及要开几次方就可以了。比如演示里是3开3次方:

3、然后需要编译运行,点击菜单栏上run下面的run命令,执行编译运行:

4、在下方的结果中即可看到运算的结果尾27,说明是是正确的。以上就是python中开N次方的操作方法:

python中根号怎么输入

第一种方法:使用math模块,使用之前需要先调用。

第二种方法:使用内置函数pow()。

第三种方法:使用数学表达式。

python学习网,免费的在线学习python平台,欢迎关注!

python里的二次根式怎么写

二次方根,表示为〔√ ̄〕。

如:数学语言为:√ ̄16=4。语言描述为:根号下16=4。

以下实例为通过用户输入一个数字,并计算这个数字的平方根:#-*-coding:UTF-8-*-#Filename:test.pynum=float(input('请输入一个数字:'))num_sqrt=num**0.5print('%0.3f的平方根为%0.3f'%(num,num_sqrt))。执行以上代码输出结果为:$pythontest.py请输入一个数字:44.000的平方根为2.000,在该实例中,我们通过用户输入一个数字,并使用指数运算符**来计算该数的平方根。

python根号怎么写

1、代码

import math

a = math.sqrt(4)

print(a)

2、结果

2

3、说明

python根号是使用math模块中的sqrt()


网站标题:python数学函数根号 python计算根号方程
网站路径:http://njwzjz.com/article/hgdcsd.html