网站建设资讯

NEWS

网站建设资讯

keras:model.compile损失函数怎么用-创新互联

创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!

创新互联自2013年创立以来,公司以做网站、成都网站制作、系统开发、网络推广、文化传媒、企业宣传、平面广告设计等为主要业务,适用行业近百种。服务企业客户上1000家,涉及国内多个省份客户。拥有多年网站建设开发经验。为企业提供专业的网站建设、创意设计、宣传推广等服务。 通过专业的设计、独特的风格,为不同客户提供各种风格的特色服务。

这篇文章主要介绍keras:model.compile损失函数怎么用,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

损失函数loss:该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropy、mse,也可以为一个损失函数。详情见losses

可用的损失目标函数:

mean_squared_error或mse

mean_absolute_error或mae

mean_absolute_percentage_error或mape

mean_squared_logarithmic_error或msle

squared_hinge

hinge

categorical_hinge

binary_crossentropy(亦称作对数损失,logloss)

logcosh

categorical_crossentropy:亦称作多类的对数损失,注意使用该目标函数时,需要将标签转化为形如(nb_samples, nb_classes)的二值序列

sparse_categorical_crossentrop:如上,但接受稀疏标签。注意,使用该函数时仍然需要你的标签与输出值的维度相同,你可能需要在标签数据上增加一个维度:np.expand_dims(y,-1)

kullback_leibler_divergence:从预测值概率分布Q到真值概率分布P的信息增益,用以度量两个分布的差异.

poisson:即(predictions - targets * log(predictions))的均值

cosine_proximity:即预测值与真实标签的余弦距离平均值的相反数

补充知识:keras.model.compile() 自定义损失函数注意点

基本用法

model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])

注意

loss后类似'binary_crossentropy'、'mse'等代称

loss为函数名称的时候,不带括号

函数参数必须为(y_true, y_pred, **kwards)的格式

不能直接使用tf.nn.sigmoid_cross_entropy_with_logits等函数,因为其参数格式为(labels=None,

logits=None),需要指定labels=、logits=这两个参数

以上是keras:model.compile损失函数怎么用的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联-成都网站建设公司行业资讯频道!


当前名称:keras:model.compile损失函数怎么用-创新互联
URL网址:http://njwzjz.com/article/gcjpj.html