网站建设资讯

NEWS

网站建设资讯

python函数库有多少,python里的函数库

Python数据分析库有哪些

Python数据分析必备的第三方库:

成都创新互联专注于企业成都营销网站建设、网站重做改版、黄平网站定制设计、自适应品牌网站建设、H5高端网站建设商城开发、集团公司官网建设、外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为黄平等各大城市提供网站开发制作服务。

1、Pandas

Pandas是Python强大、灵活的数据分析和探索工具,包含Serise、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。

Pandas是Python的一个数据分析包,Pandas最初使用用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。

Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。

2、Numpy

Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是Scipy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。

Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。

3、Matplotlib

Matplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。

Matplotlib是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。

Matplotlib是基于Numpy的一套Python包,这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。

4、SciPy

SciPy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。

SciPy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。Scipy依赖于Numpy,并提供许多对用户友好的和有效的数值例程,如数值积分和优化。

5、Keras

Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。

6、Scrapy

Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活的完成各种需求。

7、Gensim

Gensim是用来做文本主题模型的库,常用于处理语言方面的任务,支持TF-IDF、LSA、LDA和Word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。

python有多少内置函数

Python内置函数有很多,为大家推荐5个神仙级的内置函数:

(1)Lambda函数

用于创建匿名函数,即没有名称的函数。它只是一个表达式,函数体比def简单很多。当我们需要创建一个函数来执行单个操作并且可以在一行中编写时,就可以用到匿名函数了。

Lamdba的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。

利用Lamdba函数,往往可以将代码简化许多。

(2)Map函数

会将一个函数映射到一个输入列表的所有元素上,比如我们先创建了一个函数来返回一个大写的输入单词,然后将此函数应有到列表colors中的所有元素。

我们还可以使用匿名函数lamdba来配合map函数,这样可以更加精简。

(3)Reduce函数

当需要对一个列表进行一些计算并返回结果时,reduce()是个非常有用的函数。举个例子,当需要计算一个整数列表所有元素的乘积时,即可使用reduce函数实现。

它与函数的最大的区别就是,reduce()里的映射函数(function)接收两个参数,而map接收一个参数。

(4)enumerate函数

用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中。

它的两个参数,一个是序列、迭代器或其他支持迭代对象;另一个是下标起始位置,默认情况从0开始,也可以自定义计数器的起始编号。

(5)Zip函数

用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表

当我们使用zip()函数时,如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同。

最常用的几个python库

Python常用库大全,看看有没有你需要的。

环境管理

管理 Python 版本和环境的工具

p – 非常简单的交互式 python 版本管理工具。

pyenv – 简单的 Python 版本管理工具。

Vex – 可以在虚拟环境中执行命令。

virtualenv – 创建独立 Python 环境的工具。

virtualenvwrapper- virtualenv 的一组扩展。

包管理

管理包和依赖的工具。

pip – Python 包和依赖关系管理工具。

pip-tools – 保证 Python 包依赖关系更新的一组工具。

conda – 跨平台,Python 二进制包管理工具。

Curdling – 管理 Python 包的命令行工具。

wheel – Python 分发的新标准,意在取代 eggs。

包仓库

本地 PyPI 仓库服务和代理。

warehouse – 下一代 PyPI。

Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。

devpi – PyPI 服务和打包/测试/分发工具。

localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。

分发

打包为可执行文件以便分发。

PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。

dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。

Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。

py2app – 将 Python 脚本变为独立软件包(Mac OS X)。

py2exe – 将 Python 脚本变为独立软件包(Windows)。

pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。

构建工具

将源码编译成软件。

buildout – 一个构建系统,从多个组件来创建,组装和部署应用。

BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。

fabricate – 对任何语言自动找到依赖关系的构建工具。

PlatformIO – 多平台命令行构建工具。

PyBuilder – 纯 Python 实现的持续化构建工具。

SCons – 软件构建工具。

交互式解析器

交互式 Python 解析器。

IPython – 功能丰富的工具,非常有效的使用交互式 Python。

bpython- 界面丰富的 Python 解析器。

ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。

文件

文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。

imghdr – (Python 标准库)检测图片类型。

mimetypes – (Python 标准库)将文件名映射为 MIME 类型。

path.py – 对 os.path 进行封装的模块。

pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。

python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。

Unipath- 用面向对象的方式操作文件和目录

watchdog – 管理文件系统事件的 API 和 shell 工具

日期和时间

操作日期和时间的类库。

arrow- 更好的 Python 日期时间操作类库。

Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。

dateutil – Python datetime 模块的扩展。

delorean- 解决 Python 中有关日期处理的棘手问题的库。

moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。

PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。

pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。

when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。

文本处理

用于解析和操作文本的库。

通用

chardet – 字符编码检测器,兼容 Python2 和 Python3。

difflib – (Python 标准库)帮助我们进行差异化比较。

ftfy – 让Unicode文本更完整更连贯。

fuzzywuzzy – 模糊字符串匹配。

Levenshtein – 快速计算编辑距离以及字符串的相似度。

pangu.py – 在中日韩语字符和数字字母之间添加空格。

pyfiglet -figlet 的 Python实现。

shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。

unidecode – Unicode 文本的 ASCII 转换形式 。

uniout – 打印可读的字符,而不是转义的字符串。

xpinyin – 一个用于把汉字转换为拼音的库。

Python 常用的标准库以及第三方库有哪些

推荐5个常用的Python标准库:

1、os:提供了不少与操作系统相关联的函数库

os包是Python与操作系统的接口。我们可以用os包来实现操作系统的许多功能,比如管理系统进程,改变当前路径,改变文件权限等。但要注意,os包是建立在操作系统的平台上的,许多功能在Windows系统上是无法实现的。另外,在使用os包中,要注意其中的有些功能已经被其他的包取代。

我们通过文件系统来管理磁盘上储存的文件。查找、删除、复制文件以及列出文件列表等都是常见的文件操作。这些功能通常可以在操作系统中看到,但现在可以通过Python标准库中的glob包、shutil包、os.path包以及os包的一些函数等,在Python内部实现。

2、sys:通常用于命令行参数的库

sys包被用于管理Python自身的运行环境。Python是一个解释器,也是一个运行在操作系统上的程序。我们可以用sys包来控制这一程序运行的许多参数,比如说Python运行所能占据的内存和CPU,Python所要扫描的路径等。另一个重要功能是和Python自己的命令行互动,从命令行读取命令和参数。

3、random:用于生成随机数的库

Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。

4、math:提供了数学常数和数学函数

标准库中,Python定义了一些新的数字类型,以弥补之前的数字类型可能的不足。标准库还包含了random包,用于处理随机数相关的功能。math包补充了一些重要的数学常数和数学函数,比如pi、三角函数等等。

5、datetime:日期和时间的操作库

日期和时间的管理并不复杂,但容易犯错。Python的标准库中对日期和时间的管理颇为完善,你不仅可以进行日期时间的查询和变换,还可以对日期时间进行运算。通过这些标准库,还可以根据需要控制日期时间输出的文本格式

python 的库有多少?

库都是人说的算,比如说你写了一个很好用的库,开源出去然后再告知python,python也觉得这个好就给你发行了。

去网上搜了,现在大于500多个库

最受欢迎的 15 大 Python 库有哪些

1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。

2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。

3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。

4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。

5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。

6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。

7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。

8、Scikits:是Scikits

Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。

9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。

10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。

11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。

12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。

13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。


标题名称:python函数库有多少,python里的函数库
文章起源:http://njwzjz.com/article/dscsesc.html