网站建设资讯

NEWS

网站建设资讯

java气泡代码 安卓气泡代码

各位大神,用java swt 怎么实现文本框的气泡提示,就像QQ一样,提示用户名不能为空

气泡提示解决思路如下:

创新互联是一家专业提供太和企业网站建设,专注与成都网站建设、做网站、H5网站设计、小程序制作等业务。10年已为太和众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。

1、非模态弹出对话框。

2、去掉弹出对话框的边框和标题栏。

3、对话框上用于显示的控件全部自绘,以达到绚丽的效果。

4、设置对话框弹出位置。

5、定时器控制对话框消失。

Java冒泡排序的原理?

冒泡排序是所欲排序算法里最好理解的了。

1、排序算法:

A)比较相邻的元素。如果第一个比第二个大,就交换他们两个。

B)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

C)针对所有的元素重复以上的步骤,除了最后一个。

D)持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

2、给你一个java的实现代码:

public class BubbleSort{

public static void main(String[] args){

   int score[] = {67, 69, 75, 87, 89, 90, 99, 100};

   for (int i = 0; i score.length -1; i++){ //最多做n-1趟排序

       for(int j = 0 ;j score.length - i - 1; j++){ //对当前无序区间score[0......length-i-1]进行排序(j的范围很关键,这个范围是在逐步缩小的)

           if(score[j] score[j + 1]){ //把小的值交换到后面

               int temp = score[j];

               score[j] = score[j + 1];

               score[j + 1] = temp;

           }

       }

       System.out.print("第" + (i + 1) + "次排序结果:");

       for(int a = 0; a score.length; a++){

           System.out.print(score[a] + "\t");

       }

       System.out.println("");

   }

       System.out.print("最终排序结果:");

       for(int a = 0; a score.length; a++){

           System.out.print(score[a] + "\t");

  }

}

}

Java怎样实现类似Android/IOS短信界面 微信聊天 QQ空间回复那样一左一右的气泡式 界面该怎样布局

其实就是两个布局,里面头像,对话框控件的android:id一样,然后再adapter中getview()根据用户判断选择不同的加载就OK了,代码类似于

if (判断) {

view = LayoutInflater.from(activity).inflate(

R.layout.left, null);//左边的布局

} else {

view = LayoutInflater.from(activity).inflate(

R.layout.right, null);//右边的布局

}

ImageView avatar = (ImageView) view.findViewById();//头像

TextView msg = (TextView) view.findViewById(R.id.);//对话框

java中冒泡排序算法的详细解答以及程序?

实例说明 

用冒泡排序方法对数组进行排序。 

实例解析 

交换排序的基本思想是两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。 

应用交换排序基本思想的主要排序方法有冒泡排序和快速排序。 

冒泡排序 

将被排序的记录数组 R[1..n] 垂直排列,每个记录 R[i] 看做是重量为 R[i].key 的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组 R 。凡扫描到违反本原则的轻气泡,就使其向上“漂浮”。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。 

(1) 初始, R[1..n] 为无序区。 

(2) 第一趟扫描,从无序区底部向上依次比较相邻的两个气泡的重量,若发现轻者在下、重者在上,则交换二者的位置。即依次比较 (R[n],R[n-1]) 、 (R[n-1],R[n-2]) 、 … 、 (R[2],R[1]); 对于每对气泡 (R[j+1],R[j]), 若 R[j+1].keyR[j].key, 则交换 R[j+1] 和 R[j] 的内容。 

第一趟扫描完毕时,“最轻”的气泡就飘浮到该区间的顶部,即关键字最小的记录被放在最高位置 R[1] 上。 

(3) 第二趟扫描,扫描 R[2..n]。扫描完毕时,“次轻”的气泡飘浮到 R[2] 的位置上 …… 最后,经过 n-1 趟扫描可得到有序区 R[1..n]。 

注意:第 i 趟扫描时, R[1..i-1] 和 R[i..n] 分别为当前的有序区和无序区。扫描仍是从无序区底部向上直至该区顶部。扫描完毕时,该区中最轻气泡漂浮到顶部位置 R[i] 上,结果是 R[1..i] 变为新的有序区。 

冒泡排序算法 

因为每一趟排序都使有序区增加了一个气泡,在经过 n-1 趟排序之后,有序区中就有 n-1 个气泡,而无序区中气泡的重量总是大于等于有序区中气泡的重量,所以整个冒泡排序过程至多需要进行 n-1 趟排序。 

若在某一趟排序中未发现气泡位置的交换,则说明待排序的无序区中所有气泡均满足轻者在上,重者在下的原则,因此,冒泡排序过程可在此趟排序后终止。为此,在下面给出的算法中,引入一个布尔量 exchange, 在每趟排序开始前,先将其置为 FALSE 。若排序过程中发生了交换,则将其置为 TRUE 。各趟排序结束时检查 exchange, 若未曾发生过交换则终止算法,不再进行下趟排序。

具体算法如下: 

void BubbleSort(SeqList R){ 

//R(1..n) 是待排序的文件,采用自下向上扫描,对 R 做冒泡排序 

int i,j; 

Boolean exchange; // 交换标志 

for(i=1;in;i++){ // 最多做 n-1 趟排序 

exchange=FALSE; // 本趟排序开始前,交换标志应为假 

for(j=n-1;j=i;j--) // 对当前无序区 R[i..n] 自下向上扫描 

if(R[j+1].keyR[j].key){ // 交换记录 

R[0]=R[j+1]; //R[0] 不是哨兵,仅做暂存单元 

R[j+1]=R[j]; 

R[j]=R[0]; 

exchange=TRUE; // 发生了交换,故将交换标志置为真 

if(!exchange) // 本趟排序未发生交换,提前终止算法 

return; 

} //endfor( 外循环 ) 

}//BubbleSort

public class BubbleSort {

public static void main(String[] args) {

// TODO Auto-generated method stub

ListInteger lstInteger = new ArrayListInteger();

lstInteger.add(1);

lstInteger.add(1);

lstInteger.add(3);

lstInteger.add(2);

lstInteger.add(1);

for(int i = 0; ilstInteger.size(); i++){

System.out.println(lstInteger.get(i));

}

System.out.println("排序之后-----------------");

lstInteger = sortList(lstInteger);

for(int i = 0; ilstInteger.size(); i++){

System.out.println(lstInteger.get(i));

}

}

public static ListInteger sortList(ListInteger lstInteger){

int i,j,m;

boolean blChange;

int n = lstInteger.size();

for(i=0;in;i++){

blChange = false;

for(j = n-1; ji ; j-- ){

if(lstInteger.get(j)lstInteger.get(j-1)){

m = lstInteger.get(j-1);

lstInteger.set(j-1, lstInteger.get(j));

lstInteger.set(j, m);

blChange = true;

}

}

if(!blChange){

return lstInteger;

}

}

return lstInteger;

}

}

归纳注释 

算法的最好时间复杂度: 若文件的初始状态是正序的, 一趟扫描即可完成排序。所需的关键字比较次数 C 和记录移动次数 M 均达到最小值,即 C(min)=n-1, M(min)= 0 。冒泡排序最好的时间复杂度为 O(n)。 

算法的最坏时间复杂度: 若初始文件是反序的,需要进行 n-1 趟排序。每趟排序要进行 n-1 次关键字的比较 (1=i=n-1), 且每次比较都必须移动记录 3 次。在这种情况下,比较和移动次数均达到最大值,即 C(max)=n(n-1)/2=O(n ^2 ),M(max)=3n(n-1)/2=O(n ^2 )。冒泡排序的最坏时间复杂度为 O(n^2 )。 

算法的平均时间复杂度为 O(n^2 )。虽然冒泡排序不一定要进行 n-1 趟,但由于它的记录移动次数较多,故平均时间性能比直接插入排序要差得多。 

算法稳定性:冒泡排序是就地排序,且它是稳定的。 

算法改进:上述的冒泡排序还可做如下的改进,① 记住最后一次交换发生位置 lastExchange 的冒泡排序( 该位置之前的相邻记录均已有序 )。下一趟排序开始时,R[1..lastExchange-1] 是有序区, R[lastExchange..n] 是无序区。这样,一趟排序可能使当前有序区扩充多个记录,从而减少排序的趟数。② 改变扫描方向的冒泡排序。冒泡排序具有不对称性。能一趟扫描完成排序的情况,只有最轻的气泡位于 R[n] 的位置,其余的气泡均已排好序,那么也只需一趟扫描就可以完成排序。如对初始关键字序列 12、18、42、44、45、67、94、10 就仅需一趟扫描。需要 n-1 趟扫描完成排序情况,当只有最重的气泡位于 R[1] 的位置,其余的气泡均已排好序时,则仍需做 n-1 趟扫描才能完成排序。比如对初始关键字序列:94、10、12、18、42、44、45、67 就需 7 趟扫描。造成不对称性的原因是每趟扫描仅能使最重气泡“下沉”一个位置,因此使位于顶端的最重气泡下沉到底部时,需做 n-1 趟扫描。在排序过程中交替改变扫描方向,可改进不对称性


文章名称:java气泡代码 安卓气泡代码
文章分享:http://njwzjz.com/article/dopghhp.html