网站建设资讯

NEWS

网站建设资讯

python反余弦函数 反余弦函数值

Python--math库

Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算,若需计算复数,可使用cmath模块(本文不赘述)。

网站建设哪家好,找成都创新互联!专注于网页设计、网站建设、微信开发、小程序设计、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了桦川免费建站欢迎大家使用!

使用dir函数,查看math库中包含的所有内容:

1) math.pi    # 圆周率π

2) math.e    #自然对数底数

3) math.inf    #正无穷大∞,-math.inf    #负无穷大-∞

4) math.nan    #非浮点数标记,NaN(not a number)

1) math.fabs(x)    #表示X值的绝对值

2) math.fmod(x,y)    #表示x/y的余数,结果为浮点数

3) math.fsum([x,y,z])    #对括号内每个元素求和,其值为浮点数

4) math.ceil(x)    #向上取整,返回不小于x的最小整数

5)math.floor(x)    #向下取整,返回不大于x的最大整数

6) math.factorial(x)    #表示X的阶乘,其中X值必须为整型,否则报错

7) math.gcd(a,b)    #表示a,b的最大公约数

8)  math.frexp(x)      #x = i *2^j,返回(i,j)

9) math.ldexp(x,i)    #返回x*2^i的运算值,为math.frexp(x)函数的反运算

10) math.modf(x)    #表示x的小数和整数部分

11) math.trunc(x)    #表示x值的整数部分

12) math.copysign(x,y)    #表示用数值y的正负号,替换x值的正负号

13) math.isclose(a,b,rel_tol =x,abs_tol = y)    #表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a,b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用,abs_tol必须至少为0。

14) math.isfinite(x)    #表示当x不为无穷大时,返回True,否则返回False

15) math.isinf(x)    #当x为±∞时,返回True,否则返回False

16) math.isnan(x)    #当x是NaN,返回True,否则返回False

1) math.pow(x,y)    #表示x的y次幂

2) math.exp(x)    #表示e的x次幂

3) math.expm1(x)    #表示e的x次幂减1

4) math.sqrt(x)    #表示x的平方根

5) math.log(x,base)    #表示x的对数值,仅输入x值时,表示ln(x)函数

6) math.log1p(x)    #表示1+x的自然对数值

7) math.log2(x)    #表示以2为底的x对数值

8) math.log10(x)    #表示以10为底的x的对数值

1) math.degrees(x)    #表示弧度值转角度值

2) math.radians(x)    #表示角度值转弧度值

3) math.hypot(x,y)    #表示(x,y)坐标到原点(0,0)的距离

4) math.sin(x)    #表示x的正弦函数值

5) math.cos(x)    #表示x的余弦函数值

6) math.tan(x)    #表示x的正切函数值

7)math.asin(x)    #表示x的反正弦函数值

8) math.acos(x)    #表示x的反余弦函数值

9) math.atan(x)    #表示x的反正切函数值

10) math.atan2(y,x)    #表示y/x的反正切函数值

11) math.sinh(x)    #表示x的双曲正弦函数值

12) math.cosh(x)    #表示x的双曲余弦函数值

13) math.tanh(x)    #表示x的双曲正切函数值

14) math.asinh(x)    #表示x的反双曲正弦函数值

15) math.acosh(x)    #表示x的反双曲余弦函数值

16) math.atanh(x)    #表示x的反双曲正切函数值

1)math.erf(x)    #高斯误差函数

2) math.erfc(x)    #余补高斯误差函数

3) math.gamma(x)    #伽马函数(欧拉第二积分函数)

4) math.lgamma(x)    #伽马函数的自然对数

Python中的反三角函数求确定角度

acos()方法返回x的反余弦值,以弧度表示。

以下是acos()方法的语法:acos(x)

注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。x -- 这必须是在范围内的数字值-1到1,如果x大于1,则它会产生一个错误。

扩展资料

python运行的两种方式

1、命令行:python +需要执行的代码

特点:会立即看到效果,用于代码调试,写到内存中,不会永久保存

2、写到文件里面:python +执行文件的位置

特点:可以永久保存。

过程:

1、启动python解释器

2、将内容从硬盘读取到内存中

3、执行python代码

(再次强调:程序在未运行前跟普通文件无异,只有程序在运行时,文件内所写的字符才有特定的语法意义)

python3.0中import havsin应该怎么写

不是importmath 而是: import math,中间是有空格的。

这是让python导入数学模块,使python支持一系列数学函数和常量。

比如math.pi 就是常数 π (3.14159...)

比如math.acos(x) 就是反余弦函数!

如何用python表示三角函数

Python编码下面的三角函数包括以下种类:acos(x)//返回x的反余弦弧度值。asin(x)//返回x的反正弦弧度值。atan(x)//返回x的反正切弧度值。atan2(y,x)//返回给定的X及Y坐标值的反正切值。cos(x)//返回x的弧度的余弦值。hypot(x,y

描述

sin()返回的x弧度的正弦值。

语法

以下是sin()方法的语法:

importmath

math.sin(x)

注意:sin()是不能直接访问的,需要导入math模块,然后通过math静态对象调用该方法。

参数

x--一个数值。

返回值

返回的x弧度的正弦值,数值在-1到1之间。

实例

以下展示了使用sin()方法的实例:

#!/usr/bin/python

import math

print "sin(3) : ", math.sin(3)

print "sin(-3) : ", math.sin(-3)

print "sin(0) : ", math.sin(0)

print "sin(math.pi) : ", math.sin(math.pi)

print "sin(math.pi/2) : ", math.sin(math.pi/2)

以上实例运行后输出结果为:

sin(3) : 0.14112000806

sin(-3) : -0.14112000806

sin(0) : 0.0

sin(math.pi) : 1.22460635382e-16

sin(math.pi/2) : 1

总结

以上就是本文关于Python入门之三角函数sin()函数实例详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python正则表达式re之compile函数解析、Python中enumerate函数代码解析、简单了解Python中的几种函数等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

python三角函数怎么输入度数

python三角函数输入度数:acos(x) //返回x的反余弦弧度值。 asin(x) //返回x的反正弦弧度值。 atan(x) //返回x的反正切弧度值。

def read_cell(x,y):if cell_type(x,y)==4: #4是真值类型(bool),return "TRUE" if cell_value(x,y)==1 else "FALSE"。

elif cell_type(x,y)==2: #2是数字类型(number),return str(cell_value(x,y)),else:#其他类型不再一一列举,用到时再做增加。

python三角函数规范的代码:

Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。Python的作者设计限制性很强的语法,使得不好的编程习惯(例如if语句的下一行不向右缩进)都不能通过编译。其中很重要的一项就是Python的缩进规则。

一个和其他大多数语言(如C)的区别就是,一个模块的界限,完全是由每行的首字符在这一行的位置来决定(而C语言是用一对大括号{}来明确的定出模块的边界,与字符的位置毫无关系)。通过强制程序员们缩进,Python确实使得程序更加清晰和美观。


标题名称:python反余弦函数 反余弦函数值
链接分享:http://njwzjz.com/article/dodijoo.html