网站建设资讯

NEWS

网站建设资讯

python插值函数 插值 python

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

创新互联专业提供郑州服务器托管服务,为用户提供五星数据中心、电信、双线接入解决方案,用户可自行在线购买郑州服务器托管服务,并享受7*24小时金牌售后服务。

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~

python可否用自定义函数对数据进行插值

直接定义a=True/False就行,示例代码:

#定义布尔值类型参数a,b,值分别为True,False

a=True

b=False

print a,b

print type(a),type(b)

True False

type 'bool' type 'bool'

Python中的布尔类型:

Python的布尔类型有两个值:True和False(注意大小写要区分)

图像双三次插值算法原理及python实现

一. 图像双三次插值算法原理:

假设源图像 A 大小为 m*n ,缩放后的目标图像 B 的大小为 M*N 。那么根据比例我们可以得到 B(X,Y) 在 A 上的对应坐标为 A(x,y) = A( X*(m/M), Y*(n/N) ) 。在双线性插值法中,我们选取 A(x,y) 的最近四个点。而在双立方插值法中,我们选取的是最近的16个像素点作为计算目标图像 B(X,Y) 处像素值的参数。如图所示:

如图所示 P 点就是目标图像 B 在 (X,Y) 处对应于源图像中的位置,P 的坐标位置会出现小数部分,所以我们假设 P 的坐标为 P(x+u,y+v),其中 x,y 分别表示整数部分,u,v 分别表示小数部分。那么我们就可以得到如图所示的最近 16 个像素的位置,在这里用 a(i,j)(i,j=0,1,2,3) 来表示。 

双立方插值的目的就是通过找到一种关系,或者说系数,可以把这 16 个像素对于 P 处像素值的影响因子找出来,从而根据这个影响因子来获得目标图像对应点的像素值,达到图像缩放的目的。 

    BiCubic基函数形式如下:

二. python实现双三次插值算法

from PIL import Image

import numpy as np

import math

# 产生16个像素点不同的权重

def BiBubic(x):

x=abs(x)

if x=1:

    return 1-2*(x**2)+(x**3)

elif x2:

    return 4-8*x+5*(x**2)-(x**3)

else:

    return 0

# 双三次插值算法

# dstH为目标图像的高,dstW为目标图像的宽

def BiCubic_interpolation(img,dstH,dstW):

scrH,scrW,_=img.shape

#img=np.pad(img,((1,3),(1,3),(0,0)),'constant')

retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

for i in range(dstH):

    for j in range(dstW):

        scrx=i*(scrH/dstH)

        scry=j*(scrW/dstW)

        x=math.floor(scrx)

        y=math.floor(scry)

        u=scrx-x

        v=scry-y

        tmp=0

        for ii in range(-1,2):

            for jj in range(-1,2):

                if x+ii0 or y+jj0 or x+ii=scrH or y+jj=scrW:

                    continue

                tmp+=img[x+ii,y+jj]*BiBubic(ii-u)*BiBubic(jj-v)

        retimg[i,j]=np.clip(tmp,0,255)

return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiCubic_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('BiCubic_interpolation.jpg')

三. 实验结果:

四. 参考内容:

   

   

python线性插值解析

在缺失值填补上如果用前后的均值填补中间的均值, 比如,0,空,1, 我们希望中间填充0.5;或者0,空,空,1,我们希望中间填充0.33,0.67这样。

可以用pandas的函数进行填充,因为这个就是线性插值法

df..interpolate()

dd=pd.DataFrame(data=[0,np.nan,np.nan,1])

dd.interpolate()

补充知识:线性插值公式简单推导

以上这篇python线性插值解析就是我分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

双线性插值法原理 python实现

码字不易,如果此文对你有所帮助,请帮忙点赞,感谢!

一. 双线性插值法原理:

    ① 何为线性插值?

    插值就是在两个数之间插入一个数,线性插值原理图如下:

    ② 各种插值法:

    插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:

    srcX = dstX * (srcWidth/dstWidth)

    srcY = dstY * (srcHeight/dstHeight)

    (dstX,dstY)表示目标图像的某个坐标点,(srcX,srcY)表示与之对应的原图像的坐标点。srcWidth/dstWidth 和 srcHeight/dstHeight 分别表示宽和高的放缩比。

    那么问题来了,通过这个公式算出来的 srcX, scrY 有可能是小数,但是原图像坐标点是不存在小数的,都是整数,得想办法把它转换成整数才行。

不同插值法的区别就体现在 srcX, scrY 是小数时,怎么将其变成整数去取原图像中的像素值。

最近邻插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入选取最接近的整数。这样的做法会导致像素变化不连续,在目标图像中产生锯齿边缘。

双线性插值(Bilinear Interpolation):双线性就是利用与坐标轴平行的两条直线去把小数坐标分解到相邻的四个整数坐标点。权重与距离成反比。

    双三次插值(Bicubic Interpolation):与双线性插值类似,只不过用了相邻的16个点。但是需要注意的是,前面两种方法能保证两个方向的坐标权重和为1,但是双三次插值不能保证这点,所以可能出现像素值越界的情况,需要截断。

    ③ 双线性插值算法原理

假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,然后再在 y 方向上进行线性插值,最终得到双线性插值的结果。

④ 举例说明

二. python实现灰度图像双线性插值算法:

灰度图像双线性插值放大缩小

import numpy as np

import math

import cv2

def double_linear(input_signal, zoom_multiples):

'''

双线性插值

:param input_signal: 输入图像

:param zoom_multiples: 放大倍数

:return: 双线性插值后的图像

'''

input_signal_cp = np.copy(input_signal)  # 输入图像的副本

input_row, input_col = input_signal_cp.shape # 输入图像的尺寸(行、列)

# 输出图像的尺寸

output_row = int(input_row * zoom_multiples)

output_col = int(input_col * zoom_multiples)

output_signal = np.zeros((output_row, output_col)) # 输出图片

for i in range(output_row):

    for j in range(output_col):

        # 输出图片中坐标 (i,j)对应至输入图片中的最近的四个点点(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值

        temp_x = i / output_row * input_row

        temp_y = j / output_col * input_col

        x1 = int(temp_x)

        y1 = int(temp_y)

        x2 = x1

        y2 = y1 + 1

        x3 = x1 + 1

        y3 = y1

        x4 = x1 + 1

        y4 = y1 + 1

        u = temp_x - x1

        v = temp_y - y1

        # 防止越界

        if x4 = input_row:

            x4 = input_row - 1

            x2 = x4

            x1 = x4 - 1

            x3 = x4 - 1

        if y4 = input_col:

            y4 = input_col - 1

            y3 = y4

            y1 = y4 - 1

            y2 = y4 - 1

        # 插值

        output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])

return output_signal

# Read image

img = cv2.imread("../paojie_g.jpg",0).astype(np.float)

out = double_linear(img,2).astype(np.uint8)

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 灰度图像双线性插值实验结果:

四. 彩色图像双线性插值python实现

def BiLinear_interpolation(img,dstH,dstW):

scrH,scrW,_=img.shape

img=np.pad(img,((0,1),(0,1),(0,0)),'constant')

retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

for i in range(dstH-1):

    for j in range(dstW-1):

        scrx=(i+1)*(scrH/dstH)

        scry=(j+1)*(scrW/dstW)

        x=math.floor(scrx)

        y=math.floor(scry)

        u=scrx-x

        v=scry-y

        retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]

return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('3.png')

五. 彩色图像双线性插值实验结果:

六. 最近邻插值算法和双三次插值算法可参考:

① 最近邻插值算法:

   

    ② 双三次插值算法:

七. 参考内容:

    

   


网页标题:python插值函数 插值 python
当前网址:http://njwzjz.com/article/dodcshg.html