网站建设资讯

NEWS

网站建设资讯

go语言本地时间 golang timedate

gochannel过期时间

Go语言中的go-channel是一种很常用的并发通信方式,通过它可以实现协程之间的数据传输与同步,常常用于协程池、事件驱动、生产者-消费者模式等场景。

成都创新互联专注于兴庆企业网站建设,成都响应式网站建设,商城系统网站开发。兴庆网站建设公司,为兴庆等地区提供建站服务。全流程按需设计网站,专业设计,全程项目跟踪,成都创新互联专业和态度为您提供的服务

在Go语言中,go-channel并不支持设置过期时间,即无法直接通过给channel设置一个过期时间来控制其失效。但是可以通过其他技巧来达到类似的效果。

一种常用的技巧是在channel中传递一个结构体,该结构体中包含一个数据字段和一个time.Time类型的字段,表示数据产生的时间。在读取channel数据时,可以判断数据产生的时间是否已经过期,如果过期就直接丢弃该数据。

例如:

```go

type Data struct {

Value interface{}

ExpireAt time.Time // 数据失效时间

}

ch := make(chan Data)

// 数据写入通道,限制数据有效期10秒钟

go func() {

data := Data{Value: "hello", ExpireAt: time.Now().Add(10 * time.Second)}

ch - data

}()

// 读取通道数据

// 如果当前时间已经超过数据的失效时间,就直接丢弃该数据

// 否则就输出该数据

for {

select {

case data := -ch:

if time.Now().After(data.ExpireAt) {

continue // 已经过期,丢弃该数据

}

fmt.Println(data.Value) // 输出数据

}

}

```

这种方式虽然不是直接控制channel的过期时间,但通过控制传递的数据来达到类似的效果,是一种常用的解决方案。同时需要注意的是,如果通道中的元素被垃圾回收器所移除,那么可能被只包含指针的数据结构的通道就成为了正常的空闲物理内存的一部分,通道的元素也就永远无法失效了。因此在需要实现具有失效时间特性的通道时,需要特别注意内存管理问题。

go语言如何将时间转化为字符串String类型

如果你想输出的时间是YYYY-MM-DD的话

要在使用json数据化之前自己处理时间

type Article struct { Id int Title string CreateTimeStr string}

然后要将之前的时间转过来

Article.CreateTimeStr = Createdatetime.Format("2006-01-02")

最后序列化JSON就是YYYY-MM-DD

这是最简单的方法

为什么go语言时间格式化这么变态

是说 20060102150405 这个吗,原因大致如下:

可读性高,所见即所得

实现简单,排除二义性(15或3代表时,4代表分,5代表秒,06或2006代表年)

请参考源代码:

187 case '3':

188 return layout[0:i], stdHour12, layout[i+1:]

189

190 case '4':

191 return layout[0:i], stdMinute, layout[i+1:]

192

193 case '5':

194 return layout[0:i], stdSecond, layout[i+1:]

195

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()


文章名称:go语言本地时间 golang timedate
转载来源:http://njwzjz.com/article/ddsgocj.html