网站建设资讯

NEWS

网站建设资讯

使用Python+OpenCV如何实现图像二值化-创新互联

这篇文章运用简单易懂的例子给大家介绍使用Python+OpenCV如何实现图像二值化,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

成都创新互联是一家专业提供辽阳企业网站建设,专注与网站设计制作、成都网站建设、H5网站设计、小程序制作等业务。10年已为辽阳众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。

简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。

普通图像二值化

代码如下:

import cv2 as cv
import numpy as np

#全局阈值
def threshold_demo(image):
  gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化
  #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。
  ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)
  print("threshold value %s"%ret)
  cv.namedWindow("binary0", cv.WINDOW_NORMAL)
  cv.imshow("binary0", binary)

#局部阈值
def local_threshold(image):
  gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化
  #自适应阈值化能够根据图像不同区域亮度分布,改变阈值
  binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY, 25, 10)
  cv.namedWindow("binary1", cv.WINDOW_NORMAL)
  cv.imshow("binary1", binary)

#用户自己计算阈值
def custom_threshold(image):
  gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化
  h, w =gray.shape[:2]
  m = np.reshape(gray, [1,w*h])
  mean = m.sum()/(w*h)
  print("mean:",mean)
  ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
  cv.namedWindow("binary2", cv.WINDOW_NORMAL)
  cv.imshow("binary2", binary)

src = cv.imread('E:/imageload/kobe.jpg')
cv.namedWindow('input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放
cv.imshow('input_image', src)
threshold_demo(src)
local_threshold(src)
custom_threshold(src)
cv.waitKey(0)
cv.destroyAllWindows()

网站名称:使用Python+OpenCV如何实现图像二值化-创新互联
地址分享:http://njwzjz.com/article/ccjcii.html